Two-sample statistics based on anisotropic kernels.

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Xiuyuan Cheng, Alexander Cloninger, Ronald R Coifman
{"title":"Two-sample statistics based on anisotropic kernels.","authors":"Xiuyuan Cheng,&nbsp;Alexander Cloninger,&nbsp;Ronald R Coifman","doi":"10.1093/imaiai/iaz018","DOIUrl":null,"url":null,"abstract":"<p><p>The paper introduces a new kernel-based Maximum Mean Discrepancy (MMD) statistic for measuring the distance between two distributions given finitely many multivariate samples. When the distributions are locally low-dimensional, the proposed test can be made more powerful to distinguish certain alternatives by incorporating local covariance matrices and constructing an anisotropic kernel. The kernel matrix is asymmetric; it computes the affinity between [Formula: see text] data points and a set of [Formula: see text] reference points, where [Formula: see text] can be drastically smaller than [Formula: see text]. While the proposed statistic can be viewed as a special class of Reproducing Kernel Hilbert Space MMD, the consistency of the test is proved, under mild assumptions of the kernel, as long as [Formula: see text], and a finite-sample lower bound of the testing power is obtained. Applications to flow cytometry and diffusion MRI datasets are demonstrated, which motivate the proposed approach to compare distributions.</p>","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"9 3","pages":"677-719"},"PeriodicalIF":1.4000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaz018","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaz018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 16

Abstract

The paper introduces a new kernel-based Maximum Mean Discrepancy (MMD) statistic for measuring the distance between two distributions given finitely many multivariate samples. When the distributions are locally low-dimensional, the proposed test can be made more powerful to distinguish certain alternatives by incorporating local covariance matrices and constructing an anisotropic kernel. The kernel matrix is asymmetric; it computes the affinity between [Formula: see text] data points and a set of [Formula: see text] reference points, where [Formula: see text] can be drastically smaller than [Formula: see text]. While the proposed statistic can be viewed as a special class of Reproducing Kernel Hilbert Space MMD, the consistency of the test is proved, under mild assumptions of the kernel, as long as [Formula: see text], and a finite-sample lower bound of the testing power is obtained. Applications to flow cytometry and diffusion MRI datasets are demonstrated, which motivate the proposed approach to compare distributions.

基于各向异性核的双样本统计。
本文介绍了一种新的基于核的最大平均差异统计量,用于测量给定有限多变量样本的两个分布之间的距离。当分布是局部低维时,通过结合局部协方差矩阵和构造各向异性核,可以使所提出的测试更有效地区分某些备选方案。核矩阵是非对称的;它计算[公式:参见文本]数据点与一组[公式:参见文本]参考点之间的关联,其中[公式:参见文本]可能比[公式:参见文本]小得多。虽然所提出的统计量可以看作是一类特殊的再现核希尔伯特空间MMD,但在核的温和假设下,只要[公式:见文],就证明了检验的一致性,并得到了检验能力的有限样本下界。应用于流式细胞术和扩散MRI数据集被证明,这激发了提出的方法来比较分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信