Spectral dynamic causal modelling of resting-state fMRI: an exploratory study relating effective brain connectivity in the default mode network to genetics.

Pub Date : 2020-08-31 DOI:10.1515/sagmb-2019-0058
Yunlong Nie, Eugene Opoku, Laila Yasmin, Yin Song, Jie Wang, Sidi Wu, Vanessa Scarapicchia, Jodie Gawryluk, Liangliang Wang, Jiguo Cao, Farouk S Nathoo
{"title":"Spectral dynamic causal modelling of resting-state fMRI: an exploratory study relating effective brain connectivity in the default mode network to genetics.","authors":"Yunlong Nie,&nbsp;Eugene Opoku,&nbsp;Laila Yasmin,&nbsp;Yin Song,&nbsp;Jie Wang,&nbsp;Sidi Wu,&nbsp;Vanessa Scarapicchia,&nbsp;Jodie Gawryluk,&nbsp;Liangliang Wang,&nbsp;Jiguo Cao,&nbsp;Farouk S Nathoo","doi":"10.1515/sagmb-2019-0058","DOIUrl":null,"url":null,"abstract":"<p><p>We conduct an imaging genetics study to explore how effective brain connectivity in the default mode network (DMN) may be related to genetics within the context of Alzheimer's disease and mild cognitive impairment. We develop an analysis of longitudinal resting-state functional magnetic resonance imaging (rs-fMRI) and genetic data obtained from a sample of 111 subjects with a total of 319 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. A Dynamic Causal Model (DCM) is fit to the rs-fMRI scans to estimate effective brain connectivity within the DMN and related to a set of single nucleotide polymorphisms (SNPs) contained in an empirical disease-constrained set which is obtained out-of-sample from 663 ADNI subjects having only genome-wide data. We relate longitudinal effective brain connectivity estimated using spectral DCM to SNPs using both linear mixed effect (LME) models as well as function-on-scalar regression (FSR). In both cases we implement a parametric bootstrap for testing SNP coefficients and make comparisons with p-values obtained from asymptotic null distributions. In both networks at an initial q-value threshold of 0.1 no effects are found. We report on exploratory patterns of associations with relatively high ranks that exhibit stability to the differing assumptions made by both FSR and LME.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2019-0058","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2019-0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We conduct an imaging genetics study to explore how effective brain connectivity in the default mode network (DMN) may be related to genetics within the context of Alzheimer's disease and mild cognitive impairment. We develop an analysis of longitudinal resting-state functional magnetic resonance imaging (rs-fMRI) and genetic data obtained from a sample of 111 subjects with a total of 319 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. A Dynamic Causal Model (DCM) is fit to the rs-fMRI scans to estimate effective brain connectivity within the DMN and related to a set of single nucleotide polymorphisms (SNPs) contained in an empirical disease-constrained set which is obtained out-of-sample from 663 ADNI subjects having only genome-wide data. We relate longitudinal effective brain connectivity estimated using spectral DCM to SNPs using both linear mixed effect (LME) models as well as function-on-scalar regression (FSR). In both cases we implement a parametric bootstrap for testing SNP coefficients and make comparisons with p-values obtained from asymptotic null distributions. In both networks at an initial q-value threshold of 0.1 no effects are found. We report on exploratory patterns of associations with relatively high ranks that exhibit stability to the differing assumptions made by both FSR and LME.

分享
查看原文
静息状态fMRI的频谱动态因果建模:一项关于默认模式网络中有效大脑连接与遗传学的探索性研究。
我们进行了一项成像遗传学研究,以探索在阿尔茨海默病和轻度认知障碍的背景下,默认模式网络(DMN)中有效的大脑连接如何与遗传学相关。我们对纵向静息状态功能磁共振成像(rs-fMRI)和遗传数据进行了分析,这些数据来自111名受试者的样本,其中包括来自阿尔茨海默病神经成像倡议(ADNI)数据库的319次rs-fMRI扫描。动态因果模型(DCM)适合于rs-fMRI扫描,以估计DMN内有效的大脑连接,并与一组包含在经验疾病约束集中的单核苷酸多态性(snp)相关,该集来自663名ADNI受试者,仅具有全基因组数据。我们使用线性混合效应(LME)模型和标量函数回归(FSR)将使用频谱DCM估计的纵向有效脑连接与SNPs联系起来。在这两种情况下,我们实现了一个参数自举来测试SNP系数,并与从渐近零分布获得的p值进行比较。在初始q值阈值为0.1的两个网络中,没有发现任何影响。我们报告了相对较高等级关联的探索性模式,这些模式对FSR和LME所做的不同假设都表现出稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信