Automatic scoring of a Sentence Repetition Task from Voice Recordings.

Text, speech and dialogue. TSD Pub Date : 2016-09-01 Epub Date: 2016-09-03 DOI:10.1007/978-3-319-45510-5_54
Meysam Asgari, Allison Sliter, Jan Van Santen
{"title":"Automatic scoring of a Sentence Repetition Task from Voice Recordings.","authors":"Meysam Asgari,&nbsp;Allison Sliter,&nbsp;Jan Van Santen","doi":"10.1007/978-3-319-45510-5_54","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose an automatic scoring approach for assessing the language deficit in a sentence repetition task used to evaluate children with language disorders. From ASR-transcribed sentences, we extract sentence similarity measures, including WER and Levenshtein distance, and use them as the input features in a regression model to predict the reference scores manually rated by experts. Our experimental analysis on subject-level scores of 46 children, 33 diagnosed with autism spectrum disorders (ASD), and 13 with specific language impairment (SLI) show that proposed approach is successful in prediction of scores with averaged product-moment correlations of 0.84 between observed and predicted ratings across test folds.</p>","PeriodicalId":93146,"journal":{"name":"Text, speech and dialogue. TSD","volume":"9924 ","pages":"470-477"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687922/pdf/nihms-1644393.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Text, speech and dialogue. TSD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-45510-5_54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/9/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an automatic scoring approach for assessing the language deficit in a sentence repetition task used to evaluate children with language disorders. From ASR-transcribed sentences, we extract sentence similarity measures, including WER and Levenshtein distance, and use them as the input features in a regression model to predict the reference scores manually rated by experts. Our experimental analysis on subject-level scores of 46 children, 33 diagnosed with autism spectrum disorders (ASD), and 13 with specific language impairment (SLI) show that proposed approach is successful in prediction of scores with averaged product-moment correlations of 0.84 between observed and predicted ratings across test folds.

Abstract Image

从语音记录中自动评分句子重复任务。
在本文中,我们提出了一种自动评分方法来评估句子重复任务中的语言缺陷,用于评估语言障碍儿童。从asr转录的句子中提取句子相似度度量,包括WER和Levenshtein距离,并将其作为回归模型的输入特征,预测专家手动评分的参考分数。我们对46名儿童的学科水平分数进行了实验分析,其中33名被诊断为自闭症谱系障碍(ASD), 13名被诊断为特殊语言障碍(SLI),结果表明,我们提出的方法可以成功地预测得分,在测试折叠中,观察评分和预测评分之间的平均积差相关性为0.84。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信