Transphyletic conservation of nitric oxide synthase regulation in cephalochordates and tunicates.

IF 0.8 3区 生物学 Q4 CELL BIOLOGY
Development Genes and Evolution Pub Date : 2020-11-01 Epub Date: 2020-08-24 DOI:10.1007/s00427-020-00668-3
Filomena Caccavale, Ugo Coppola, Quirino A Vassalli, Claudia La Vecchia, Anna Palumbo, Enrico D'Aniello, Annamaria Locascio, Filomena Ristoratore, Salvatore D'Aniello
{"title":"Transphyletic conservation of nitric oxide synthase regulation in cephalochordates and tunicates.","authors":"Filomena Caccavale,&nbsp;Ugo Coppola,&nbsp;Quirino A Vassalli,&nbsp;Claudia La Vecchia,&nbsp;Anna Palumbo,&nbsp;Enrico D'Aniello,&nbsp;Annamaria Locascio,&nbsp;Filomena Ristoratore,&nbsp;Salvatore D'Aniello","doi":"10.1007/s00427-020-00668-3","DOIUrl":null,"url":null,"abstract":"<p><p>Nitric oxide synthase is ubiquitously present in metazoans and is involved in a wide range of biological processes. Three distinct Nos genes have been so far identified in vertebrates exhibiting a complex expression pattern and transcriptional regulation. Nevertheless, although independent events of Nos duplication have been observed in several taxa, only few studies described the regulatory mechanisms responsible for their activation in non-vertebrate animals. To shed light on the mechanisms underlying neuronal-type Nos expression, we focused on two non-vertebrate chordates: the cephalochordate Branchiostoma lanceolatum and the tunicate Ciona robusta. Here, throughout transphyletic and transgenic approaches, we identified genomic regions in both species acting as Nos functional enhancers during development. In vivo analyses of Nos genomic fragments revealed their ability to recapitulate the endogenous expression territories. Therefore, our results suggest the existence of evolutionary conserved mechanisms responsible for neuronal-type Nos regulation in non-vertebrate chordates. In conclusion, this study paves the way for future characterization of conserved transcriptional logic underlying the expression of neuronal-type Nos genes in chordates.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"230 5-6","pages":"329-338"},"PeriodicalIF":0.8000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00427-020-00668-3","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Genes and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00427-020-00668-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Nitric oxide synthase is ubiquitously present in metazoans and is involved in a wide range of biological processes. Three distinct Nos genes have been so far identified in vertebrates exhibiting a complex expression pattern and transcriptional regulation. Nevertheless, although independent events of Nos duplication have been observed in several taxa, only few studies described the regulatory mechanisms responsible for their activation in non-vertebrate animals. To shed light on the mechanisms underlying neuronal-type Nos expression, we focused on two non-vertebrate chordates: the cephalochordate Branchiostoma lanceolatum and the tunicate Ciona robusta. Here, throughout transphyletic and transgenic approaches, we identified genomic regions in both species acting as Nos functional enhancers during development. In vivo analyses of Nos genomic fragments revealed their ability to recapitulate the endogenous expression territories. Therefore, our results suggest the existence of evolutionary conserved mechanisms responsible for neuronal-type Nos regulation in non-vertebrate chordates. In conclusion, this study paves the way for future characterization of conserved transcriptional logic underlying the expression of neuronal-type Nos genes in chordates.

头脊索类和被囊类动物一氧化氮合酶调节的转体保护。
一氧化氮合酶在后生动物中普遍存在,并参与广泛的生物过程。到目前为止,已经在脊椎动物中发现了三种不同的Nos基因,它们表现出复杂的表达模式和转录调控。然而,尽管在一些分类群中观察到Nos重复的独立事件,但只有少数研究描述了它们在非脊椎动物中激活的调节机制。为了阐明神经元型Nos表达的机制,我们重点研究了两种非脊椎动物脊索动物:头脊索动物Branchiostoma lanceolatum和被囊动物Ciona robusta。在这里,通过转体和转基因方法,我们确定了两个物种在发育过程中作为Nos功能增强子的基因组区域。Nos基因组片段的体内分析揭示了它们概括内源性表达区域的能力。因此,我们的研究结果表明,在非脊椎动物脊索动物中存在负责神经元型Nos调节的进化保守机制。总之,本研究为脊索动物神经元型Nos基因表达的保守转录逻辑的未来表征铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Development Genes and Evolution
Development Genes and Evolution 生物-发育生物学
CiteScore
4.30
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: Development Genes and Evolution publishes high-quality reports on all aspects of development biology and evolutionary biology. The journal reports on experimental and bioinformatics work at the systemic, cellular and molecular levels in the field of animal and plant systems, covering key aspects of the following topics: Embryological and genetic analysis of model and non-model organisms Genes and pattern formation in invertebrates, vertebrates and plants Axial patterning, embryonic induction and fate maps Cellular mechanisms of morphogenesis and organogenesis Stem cells and regeneration Functional genomics of developmental processes Developmental diversity and evolution Evolution of developmentally relevant genes Phylogeny of animals and plants Microevolution Paleontology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信