Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2021-01-01 Epub Date: 2020-08-17 DOI:10.1007/s13163-020-00368-6
Salim Bouzebda, Sultana Didi
{"title":"Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes.","authors":"Salim Bouzebda,&nbsp;Sultana Didi","doi":"10.1007/s13163-020-00368-6","DOIUrl":null,"url":null,"abstract":"<p><p>In the present paper, we consider the nonparametric regression model with random design based on <math> <msub><mrow><mo>(</mo> <msub><mi>X</mi> <mi>t</mi></msub> <mo>,</mo> <msub><mi>Y</mi> <mi>t</mi></msub> <mo>)</mo></mrow> <mrow><mi>t</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </math> a <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> <mo>×</mo> <msup><mrow><mi>R</mi></mrow> <mi>q</mi></msup> </mrow> </math> -valued strictly stationary and ergodic continuous time process, where the regression function is given by <math><mrow><mi>m</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> <mo>=</mo> <mi>E</mi> <mo>(</mo> <mi>ψ</mi> <mo>(</mo> <mi>Y</mi> <mo>)</mo> <mo>∣</mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo></mrow> </math> , for a measurable function <math><mrow><mi>ψ</mi> <mo>:</mo> <msup><mrow><mi>R</mi></mrow> <mi>q</mi></msup> <mo>→</mo> <mi>R</mi></mrow> </math> . We focus on the estimation of the location <math><mrow><mi>Θ</mi></mrow> </math> (mode) of a unique maximum of <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> by the location <math> <msub> <mover><mrow><mi>Θ</mi></mrow> <mo>^</mo></mover> <mi>T</mi></msub> </math> of a maximum of the Nadaraya-Watson kernel estimator <math> <mrow> <msub><mover><mi>m</mi> <mo>^</mo></mover> <mi>T</mi></msub> <mrow><mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </mrow> </math> for the curve <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> . Within this context, we obtain the consistency with rate and the asymptotic normality results for <math> <msub> <mover><mrow><mi>Θ</mi></mrow> <mo>^</mo></mover> <mi>T</mi></msub> </math> under mild local smoothness assumptions on <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> and the design density <math><mrow><mi>f</mi> <mo>(</mo> <mo>·</mo> <mo>)</mo></mrow> </math> of <math><mi>X</mi></math> . Beyond ergodicity, any other assumption is imposed on the data. This paper extends the scope of some previous results established under the mixing condition. The usefulness of our results will be illustrated in the construction of confidence regions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13163-020-00368-6","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13163-020-00368-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

Abstract

In the present paper, we consider the nonparametric regression model with random design based on ( X t , Y t ) t 0 a R d × R q -valued strictly stationary and ergodic continuous time process, where the regression function is given by m ( x , ψ ) = E ( ψ ( Y ) X = x ) ) , for a measurable function ψ : R q R . We focus on the estimation of the location Θ (mode) of a unique maximum of m ( · , ψ ) by the location Θ ^ T of a maximum of the Nadaraya-Watson kernel estimator m ^ T ( · , ψ ) for the curve m ( · , ψ ) . Within this context, we obtain the consistency with rate and the asymptotic normality results for Θ ^ T under mild local smoothness assumptions on m ( · , ψ ) and the design density f ( · ) of X . Beyond ergodicity, any other assumption is imposed on the data. This paper extends the scope of some previous results established under the mixing condition. The usefulness of our results will be illustrated in the construction of confidence regions.

平稳和遍历连续时间过程模态核回归估计的渐近性质。
本文考虑基于(X t, Y t) t≥0的随机设计的非参数回归模型,其中回归函数为m (X, ψ) = E (ψ (Y)∣X = X)),对于可测函数ψ: R q→R。我们着重于用曲线m(·,ψ)的Nadaraya-Watson核估计量m ^ T(·,ψ)的最大值的位置Θ ^ T来估计m(·,ψ)的唯一最大值的位置Θ(模态)。在此背景下,我们得到了在m(·,ψ)和X的设计密度f(·)的温和局部光滑假设下Θ ^ T的一致性和渐近正态性结果。除了遍历性之外,还对数据施加了任何其他假设。本文扩展了前人在混合条件下建立的一些结果的范围。我们的结果的有用性将在构建置信区域中加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信