Early stage COVID-19 disease dynamics in Germany: models and parameter identification.

IF 1.2 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Journal of Mathematics in Industry Pub Date : 2020-01-01 Epub Date: 2020-07-10 DOI:10.1186/s13362-020-00088-y
Thomas Götz, Peter Heidrich
{"title":"Early stage COVID-19 disease dynamics in Germany: models and parameter identification.","authors":"Thomas Götz, Peter Heidrich","doi":"10.1186/s13362-020-00088-y","DOIUrl":null,"url":null,"abstract":"<p><p>Since the end of 2019 an outbreak of a new strain of coronavirus, called SARS-CoV-2, is reported from China and later other parts of the world. Since January 21, World Health Organization (WHO) reports daily data on confirmed cases and deaths from both China and other countries (www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports). The Johns Hopkins University (github.com/CSSEGISandData/COVID-19/blob/master/csse_COVID_19_data/csse_COVID_19_time_series/time_series_COVID19_confirmed_global.csv) collects those data from various sources worldwide on a daily basis. For Germany, the Robert-Koch-Institute (RKI) also issues daily reports on the current number of infections and infection related fatal cases (www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html). However, due to delays in the data collection, the data from RKI always lags behind those reported by Johns Hopkins. In this work we present an extended SEIRD-model to describe the disease dynamics in Germany. The parameter values are identified by matching the model output to the officially reported cases. An additional parameter to capture the influence of unidentified cases is also included in the model.</p>","PeriodicalId":44012,"journal":{"name":"Journal of Mathematics in Industry","volume":"10 1","pages":"20"},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351563/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-020-00088-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Since the end of 2019 an outbreak of a new strain of coronavirus, called SARS-CoV-2, is reported from China and later other parts of the world. Since January 21, World Health Organization (WHO) reports daily data on confirmed cases and deaths from both China and other countries (www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports). The Johns Hopkins University (github.com/CSSEGISandData/COVID-19/blob/master/csse_COVID_19_data/csse_COVID_19_time_series/time_series_COVID19_confirmed_global.csv) collects those data from various sources worldwide on a daily basis. For Germany, the Robert-Koch-Institute (RKI) also issues daily reports on the current number of infections and infection related fatal cases (www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html). However, due to delays in the data collection, the data from RKI always lags behind those reported by Johns Hopkins. In this work we present an extended SEIRD-model to describe the disease dynamics in Germany. The parameter values are identified by matching the model output to the officially reported cases. An additional parameter to capture the influence of unidentified cases is also included in the model.

Abstract Image

Abstract Image

Abstract Image

德国早期 COVID-19 疾病动态:模型和参数识别。
自 2019 年底以来,中国和世界其他地区相继报告爆发了一种名为 SARS-CoV-2 的新型冠状病毒。自 1 月 21 日起,世界卫生组织(WHO)每天都报告来自中国和其他国家(www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports)的确诊病例和死亡数据。约翰霍普金斯大学(github.com/CSSEGISandData/COVID-19/blob/master/csse_COVID_19_data/csse_COVID_19_time_series/time_series_COVID_19_confirmed_global.csv)每天从全球不同来源收集这些数据。在德国,罗伯特-科赫研究所(RKI)也发布了关于当前感染人数和与感染相关的死亡病例数的每日报告 (www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html)。然而,由于数据收集的延迟,RKI 的数据总是落后于约翰霍普金斯大学的报告。在这项工作中,我们提出了一个扩展的 SEIRD 模型来描述德国的疾病动态。通过将模型输出与官方报告的病例相匹配,确定了参数值。模型中还包含一个额外参数,用于捕捉未确定病例的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics in Industry
Journal of Mathematics in Industry MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.00
自引率
0.00%
发文量
12
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信