Mapping Motor Cortex Stimulation to Muscle Responses: A Deep Neural Network Modeling Approach.

Navid Akbar, Mathew Yarossi, Marc Martinez-Gost, Marc A Sommer, Moritz Dannhauer, Sumientra Rampersad, Dana Brooks, Eugene Tunik, Deniz Erdoğmuş
{"title":"Mapping Motor Cortex Stimulation to Muscle Responses: A Deep Neural Network Modeling Approach.","authors":"Navid Akbar, Mathew Yarossi, Marc Martinez-Gost, Marc A Sommer, Moritz Dannhauer, Sumientra Rampersad, Dana Brooks, Eugene Tunik, Deniz Erdoğmuş","doi":"10.1145/3389189.3389203","DOIUrl":null,"url":null,"abstract":"<p><p>A deep neural network (DNN) that can reliably model muscle responses from corresponding brain stimulation has the potential to increase knowledge of coordinated motor control for numerous basic science and applied use cases. Such cases include the understanding of abnormal movement patterns due to neurological injury from stroke, and stimulation based interventions for neurological recovery such as paired associative stimulation. In this work, potential DNN models are explored and the one with the minimum squared errors is recommended for the optimal performance of the M2M-Net, a network that maps transcranial magnetic stimulation of the motor cortex to corresponding muscle responses, using: a finite element simulation, an empirical neural response profile, a convolutional autoencoder, a separate deep network mapper, and recordings of multi-muscle activation. We discuss the rationale behind the different modeling approaches and architectures, and contrast their results. Additionally, to obtain a comparative insight of the trade-o between complexity and performance analysis, we explore different techniques, including the extension of two classical information criteria for M2M-Net. Finally, we find that the model analogous to mapping the motor cortex stimulation to a combination of direct and synergistic connection to the muscles performs the best, when the neural response profile is used at the input.</p>","PeriodicalId":91811,"journal":{"name":"The ... International Conference on PErvasive Technologies Related to Assistive Environments : PETRA ... International Conference on PErvasive Technologies Related to Assistive Environments","volume":"2020 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430758/pdf/nihms-1613865.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ... International Conference on PErvasive Technologies Related to Assistive Environments : PETRA ... International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3389189.3389203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A deep neural network (DNN) that can reliably model muscle responses from corresponding brain stimulation has the potential to increase knowledge of coordinated motor control for numerous basic science and applied use cases. Such cases include the understanding of abnormal movement patterns due to neurological injury from stroke, and stimulation based interventions for neurological recovery such as paired associative stimulation. In this work, potential DNN models are explored and the one with the minimum squared errors is recommended for the optimal performance of the M2M-Net, a network that maps transcranial magnetic stimulation of the motor cortex to corresponding muscle responses, using: a finite element simulation, an empirical neural response profile, a convolutional autoencoder, a separate deep network mapper, and recordings of multi-muscle activation. We discuss the rationale behind the different modeling approaches and architectures, and contrast their results. Additionally, to obtain a comparative insight of the trade-o between complexity and performance analysis, we explore different techniques, including the extension of two classical information criteria for M2M-Net. Finally, we find that the model analogous to mapping the motor cortex stimulation to a combination of direct and synergistic connection to the muscles performs the best, when the neural response profile is used at the input.

将运动皮层刺激映射到肌肉反应:深度神经网络建模方法。
深度神经网络(DNN)能够可靠地模拟相应脑刺激产生的肌肉反应,有可能为众多基础科学和应用案例增加协调运动控制方面的知识。这些案例包括了解中风造成的神经损伤导致的异常运动模式,以及基于刺激的神经康复干预,如配对联想刺激。在这项研究中,我们利用有限元模拟、经验神经响应曲线、卷积自动编码器、单独的深度网络映射器和多肌肉激活记录,探索了潜在的 DNN 模型,并推荐了具有最小平方误差的 DNN 模型,以实现 M2M 网络的最佳性能,该网络可将运动皮层的经颅磁刺激映射到相应的肌肉响应。我们讨论了不同建模方法和架构背后的原理,并对比了它们的结果。此外,为了对复杂性和性能分析之间的权衡有一个比较深入的了解,我们探索了不同的技术,包括扩展 M2M-Net 的两个经典信息标准。最后,我们发现,当使用神经响应曲线作为输入时,类似于将运动皮层刺激映射到与肌肉的直接和协同连接组合的模型表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信