{"title":"Mouth opening is mediated by separation of dorsal and ventral daughter cells of the lip precursor cells in the larvacean, Oikopleura dioica.","authors":"Ryo Morita, Takeshi A Onuma, Lucia Manni, Nobuhiko Ohno, Hiroki Nishida","doi":"10.1007/s00427-020-00667-4","DOIUrl":null,"url":null,"abstract":"<p><p>Mouth formation involves the processes of mouth opening, formation of the oral cavity, and the development of associated sensory organs. In deuterostomes, the surface ectoderm and the anterior part of the archenteron are reconfigured and reconnected to make a mouth opening. This study of the larval development of the larvacean, Oikopleura dioica, investigates the cellular organization of the oral region, the developmental processes of the mouth, and the formation of associated sensory cells. O. dioica is a simple chordate whose larvae are transparent and have a small number of constituent cells. It completes organ morphogenesis in 7 h, between hatching 3 h after fertilization and the juvenile stage at 10 h, when it attains adult form and starts to feed. It has two types of mechanosensory cell embedded in the oral epithelium, which is a single layer of cells. There are twenty coronal sensory cells in the circumoral nerve ring and two dorsal sensory organ cells. Two bilateral lip precursor cells (LPCs), facing the anterior surface, divide dorsoventrally and make a wedge-shaped cleft between the two daughter cells named the dorsal lip cell (DLC) and the ventral lip cell (VLC). Eventually, the DLC and VLC become detached and separated into dorsal and ventral lips, triggering mouth opening. This is an intriguing example of cell division itself contributing to morphogenesis. The boundary between the ectoderm and endoderm is present between the lip cells and coronal sensory cells. All oral sensory cells, including dorsal sensory organ cells, were of endodermal origin and were not derived from the ectodermal placode. These observations on mouth formation provide a cellular basis for further studies at a molecular level, in this simple chordate.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"230 5-6","pages":"315-327"},"PeriodicalIF":0.8000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00427-020-00667-4","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Genes and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00427-020-00667-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Mouth formation involves the processes of mouth opening, formation of the oral cavity, and the development of associated sensory organs. In deuterostomes, the surface ectoderm and the anterior part of the archenteron are reconfigured and reconnected to make a mouth opening. This study of the larval development of the larvacean, Oikopleura dioica, investigates the cellular organization of the oral region, the developmental processes of the mouth, and the formation of associated sensory cells. O. dioica is a simple chordate whose larvae are transparent and have a small number of constituent cells. It completes organ morphogenesis in 7 h, between hatching 3 h after fertilization and the juvenile stage at 10 h, when it attains adult form and starts to feed. It has two types of mechanosensory cell embedded in the oral epithelium, which is a single layer of cells. There are twenty coronal sensory cells in the circumoral nerve ring and two dorsal sensory organ cells. Two bilateral lip precursor cells (LPCs), facing the anterior surface, divide dorsoventrally and make a wedge-shaped cleft between the two daughter cells named the dorsal lip cell (DLC) and the ventral lip cell (VLC). Eventually, the DLC and VLC become detached and separated into dorsal and ventral lips, triggering mouth opening. This is an intriguing example of cell division itself contributing to morphogenesis. The boundary between the ectoderm and endoderm is present between the lip cells and coronal sensory cells. All oral sensory cells, including dorsal sensory organ cells, were of endodermal origin and were not derived from the ectodermal placode. These observations on mouth formation provide a cellular basis for further studies at a molecular level, in this simple chordate.
期刊介绍:
Development Genes and Evolution publishes high-quality reports on all aspects of development biology and evolutionary biology. The journal reports on experimental and bioinformatics work at the systemic, cellular and molecular levels in the field of animal and plant systems, covering key aspects of the following topics:
Embryological and genetic analysis of model and non-model organisms
Genes and pattern formation in invertebrates, vertebrates and plants
Axial patterning, embryonic induction and fate maps
Cellular mechanisms of morphogenesis and organogenesis
Stem cells and regeneration
Functional genomics of developmental processes
Developmental diversity and evolution
Evolution of developmentally relevant genes
Phylogeny of animals and plants
Microevolution
Paleontology.