David Benkeser, Andrew Mertens, John M Colford, Alan Hubbard, Benjamin F Arnold, Aryeh Stein, Mark J van der Laan
{"title":"A machine learning-based approach for estimating and testing associations with multivariate outcomes.","authors":"David Benkeser, Andrew Mertens, John M Colford, Alan Hubbard, Benjamin F Arnold, Aryeh Stein, Mark J van der Laan","doi":"10.1515/ijb-2019-0061","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a method for summarizing the strength of association between a set of variables and a multivariate outcome. Classical summary measures are appropriate when linear relationships exist between covariates and outcomes, while our approach provides an alternative that is useful in situations where complex relationships may be present. We utilize machine learning to detect nonlinear relationships and covariate interactions and propose a measure of association that captures these relationships. A hypothesis test about the proposed associative measure can be used to test the strong null hypothesis of no association between a set of variables and a multivariate outcome. Simulations demonstrate that this hypothesis test has greater power than existing methods against alternatives where covariates have nonlinear relationships with outcomes. We additionally propose measures of variable importance for groups of variables, which summarize each groups' association with the outcome. We demonstrate our methodology using data from a birth cohort study on childhood health and nutrition in the Philippines.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"17 1","pages":"7-21"},"PeriodicalIF":1.2000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2019-0061","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2019-0061","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
We propose a method for summarizing the strength of association between a set of variables and a multivariate outcome. Classical summary measures are appropriate when linear relationships exist between covariates and outcomes, while our approach provides an alternative that is useful in situations where complex relationships may be present. We utilize machine learning to detect nonlinear relationships and covariate interactions and propose a measure of association that captures these relationships. A hypothesis test about the proposed associative measure can be used to test the strong null hypothesis of no association between a set of variables and a multivariate outcome. Simulations demonstrate that this hypothesis test has greater power than existing methods against alternatives where covariates have nonlinear relationships with outcomes. We additionally propose measures of variable importance for groups of variables, which summarize each groups' association with the outcome. We demonstrate our methodology using data from a birth cohort study on childhood health and nutrition in the Philippines.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.