Bacteriophages as sources of small non-coding RNA molecules

IF 1.8 4区 生物学 Q3 GENETICS & HEREDITY
Sylwia Bloch , Natalia Lewandowska , Grzegorz Węgrzyn , Bożena Nejman-Faleńczyk
{"title":"Bacteriophages as sources of small non-coding RNA molecules","authors":"Sylwia Bloch ,&nbsp;Natalia Lewandowska ,&nbsp;Grzegorz Węgrzyn ,&nbsp;Bożena Nejman-Faleńczyk","doi":"10.1016/j.plasmid.2020.102527","DOIUrl":null,"url":null,"abstract":"<div><p>Bacteriophages play an essential role in the transferring of genes that contribute to the bacterial virulence and whose products are dangerous to human health. Interestingly, phages carrying virulence genes are mostly temperate and in contrast to lytic phages undergo both lysogenic and lytic cycles. Importantly, expression of the majority of phage genes and subsequent production of phage encoded proteins is suppressed during lysogeny. The expression of the majority of phage genes is tightly linked to lytic development. Among others, small non-coding RNAs (sRNAs) of phage origin are involved in the regulation of phage gene expression and thus play an important role in both phage and host development. In the case of bacteria, sRNAs affect processes such as virulence, colonization ability, motility and cell growth or death. In turn, in the case of phages, they play essential roles during the early stage of infection, maintaining the state of lysogeny and silencing the expression of late structural genes, thereby regulating the transition between phage life cycles. Interestingly, sRNAs have been identified in both lytic and temperate phages and they have been discussed in this work according to this classification. Particular attention was paid to viral sRNAs resembling eukaryotic microRNAs.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2020.102527","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmid","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147619X20300391","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 14

Abstract

Bacteriophages play an essential role in the transferring of genes that contribute to the bacterial virulence and whose products are dangerous to human health. Interestingly, phages carrying virulence genes are mostly temperate and in contrast to lytic phages undergo both lysogenic and lytic cycles. Importantly, expression of the majority of phage genes and subsequent production of phage encoded proteins is suppressed during lysogeny. The expression of the majority of phage genes is tightly linked to lytic development. Among others, small non-coding RNAs (sRNAs) of phage origin are involved in the regulation of phage gene expression and thus play an important role in both phage and host development. In the case of bacteria, sRNAs affect processes such as virulence, colonization ability, motility and cell growth or death. In turn, in the case of phages, they play essential roles during the early stage of infection, maintaining the state of lysogeny and silencing the expression of late structural genes, thereby regulating the transition between phage life cycles. Interestingly, sRNAs have been identified in both lytic and temperate phages and they have been discussed in this work according to this classification. Particular attention was paid to viral sRNAs resembling eukaryotic microRNAs.

噬菌体是小的非编码RNA分子的来源
噬菌体在促进细菌毒力的基因转移中起着重要作用,其产物对人体健康有害。有趣的是,携带毒力基因的噬菌体大多是温和的,与裂解噬菌体相反,它们经历溶原和裂解周期。重要的是,大多数噬菌体基因的表达和随后的噬菌体编码蛋白的产生在溶原过程中受到抑制。大多数噬菌体基因的表达与裂解发育密切相关。其中,噬菌体来源的小非编码rna (sRNAs)参与噬菌体基因表达的调控,因此在噬菌体和宿主发育中都起着重要作用。就细菌而言,sRNAs影响诸如毒力、定植能力、运动性和细胞生长或死亡等过程。反过来,就噬菌体而言,它们在感染的早期阶段发挥着至关重要的作用,维持溶原状态,沉默晚期结构基因的表达,从而调节噬菌体生命周期之间的过渡。有趣的是,在裂解性和温带噬菌体中都发现了sRNAs,并根据这种分类进行了讨论。特别关注的是类似真核microrna的病毒sRNAs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasmid
Plasmid 生物-遗传学
CiteScore
4.70
自引率
3.80%
发文量
21
审稿时长
53 days
期刊介绍: Plasmid publishes original research on genetic elements in all kingdoms of life with emphasis on maintenance, transmission and evolution of extrachromosomal elements. Objects of interest include plasmids, bacteriophages, mobile genetic elements, organelle DNA, and genomic and pathogenicity islands.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信