Arpit Mitra, Sankha Chattopadhyay, Ashok Chandak, Sangita Lad, Luna Barua, Anirban De, Umesh Kumar, Rajesh Chinagandham, Trupti Upadhye, Kamaldeep Koundal, Sharmila Banerjee, Ramakrishna Rajan
{"title":"Clinical Efficacy of Sodium [99mTc] Pertechnetate from Low Specific Activity 99Mo/99mTc Autosolex Generator in Hospital Radiopharmacy Centre.","authors":"Arpit Mitra, Sankha Chattopadhyay, Ashok Chandak, Sangita Lad, Luna Barua, Anirban De, Umesh Kumar, Rajesh Chinagandham, Trupti Upadhye, Kamaldeep Koundal, Sharmila Banerjee, Ramakrishna Rajan","doi":"10.5603/NMR.a2020.0001","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Few nuclear reactors in the world producing high specific activity (HSA) 99Mo using enriched 235U (HEU), are aging and are planned for shut down in the near future. Further, HEU will not be freely available, due to safeguards, and the technology for 99Mo from low-enriched 235U (LEU) is not yet widely accepted since 239Pu contamination in the product is an issue. Production of 99mTc from low specific activity (LSA) 99Mo obtained from 98Mo(n,)99Mo reaction in research reactor and 100Mo(,n)99Mo reaction in accelerator or directly from 100Mo(p,2n)99mTc nuclear reaction in cyclotron, has been explored [1]. The methyl ethyl ketone (MEK) based solvent extraction technique is n well known method for the separation of 99mTc from low specific activity 99Mo. The 99Mo/99mTc autosolex generator [2], a computer controlled automated module, utilizes the conventional MEK solvent extraction method for extraction of 99mTc. Herein, we have validated the usage of autosolex for preparation of pharmacopoeia grade 99mTcO4- from 7.40-27.5 GBq of LSA 99Mo-SodiumMolybdate (99MoO42-) solution and validated the quality of the 99mTcO4- by preparing wide range of 99mTc-radiopharmaceuticals (99mTc-RP).</p><p><strong>Materials and methods: </strong>The 99mTcO4- was extracted from the autosolex as described in [2] starting from 7.40-27.5 GBq of LSA 99MoO42- and subjected to the required physico-chemical and biological quality control (QC) tests. The eluted 99mTcO4- labeled various fourth generation 99mTc radiopharmaceuticals cold kits (99mTc-cold kits) apart from regular 99mTc-cold kits in our centre. Various 99mTc-RP extracted 99mTcO4- using standard procedures [3] were prepared and subjected to required QC as Indian Pharmacopeia monograph [4] and used in scintigraphic imaging in patients. The radiation exposure dose to the operator were compared between autosolex and manual MEK based solvent extraction generator.</p><p><strong>Results: </strong>The extracted 99mTcO4- from autosolex is a clear and colorless solution with pH between 5.0-6.5. The elemental molybdenum (Mo) and aluminum (Al) content <10µg/mL, MEK levels <0.1%, 99Mo breakthrough <0.030% and radiochemical purity (RCP) >98%. All the extracted 99mTcO4- batches complies sterility test, endotoxin limit (EL) <5EU/mL. The RCP of all the labeled 99mTc-RP >95%. The autosolex delivers much less radiation dose to the operator than the convention manually handled MEK based solvent extraction generator.</p><p><strong>Conclusions: </strong>Autosolex Generator was successfully used to obtain pharmaceutical grade 99mTcO4- from LSA 99MoO42- and generator is safe in radiological and pharmacological point of view. The suitability of the autosolex for use in hospital radiopharmacy was shown by using the 99mTcO4- to prepare various 99mTc-RP and using these 99mTc-RP for scintigraphic imaging in patients.</p>","PeriodicalId":44718,"journal":{"name":"NUCLEAR MEDICINE REVIEW","volume":"23 1","pages":"1-14"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUCLEAR MEDICINE REVIEW","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5603/NMR.a2020.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 2
Abstract
Background: Few nuclear reactors in the world producing high specific activity (HSA) 99Mo using enriched 235U (HEU), are aging and are planned for shut down in the near future. Further, HEU will not be freely available, due to safeguards, and the technology for 99Mo from low-enriched 235U (LEU) is not yet widely accepted since 239Pu contamination in the product is an issue. Production of 99mTc from low specific activity (LSA) 99Mo obtained from 98Mo(n,)99Mo reaction in research reactor and 100Mo(,n)99Mo reaction in accelerator or directly from 100Mo(p,2n)99mTc nuclear reaction in cyclotron, has been explored [1]. The methyl ethyl ketone (MEK) based solvent extraction technique is n well known method for the separation of 99mTc from low specific activity 99Mo. The 99Mo/99mTc autosolex generator [2], a computer controlled automated module, utilizes the conventional MEK solvent extraction method for extraction of 99mTc. Herein, we have validated the usage of autosolex for preparation of pharmacopoeia grade 99mTcO4- from 7.40-27.5 GBq of LSA 99Mo-SodiumMolybdate (99MoO42-) solution and validated the quality of the 99mTcO4- by preparing wide range of 99mTc-radiopharmaceuticals (99mTc-RP).
Materials and methods: The 99mTcO4- was extracted from the autosolex as described in [2] starting from 7.40-27.5 GBq of LSA 99MoO42- and subjected to the required physico-chemical and biological quality control (QC) tests. The eluted 99mTcO4- labeled various fourth generation 99mTc radiopharmaceuticals cold kits (99mTc-cold kits) apart from regular 99mTc-cold kits in our centre. Various 99mTc-RP extracted 99mTcO4- using standard procedures [3] were prepared and subjected to required QC as Indian Pharmacopeia monograph [4] and used in scintigraphic imaging in patients. The radiation exposure dose to the operator were compared between autosolex and manual MEK based solvent extraction generator.
Results: The extracted 99mTcO4- from autosolex is a clear and colorless solution with pH between 5.0-6.5. The elemental molybdenum (Mo) and aluminum (Al) content <10µg/mL, MEK levels <0.1%, 99Mo breakthrough <0.030% and radiochemical purity (RCP) >98%. All the extracted 99mTcO4- batches complies sterility test, endotoxin limit (EL) <5EU/mL. The RCP of all the labeled 99mTc-RP >95%. The autosolex delivers much less radiation dose to the operator than the convention manually handled MEK based solvent extraction generator.
Conclusions: Autosolex Generator was successfully used to obtain pharmaceutical grade 99mTcO4- from LSA 99MoO42- and generator is safe in radiological and pharmacological point of view. The suitability of the autosolex for use in hospital radiopharmacy was shown by using the 99mTcO4- to prepare various 99mTc-RP and using these 99mTc-RP for scintigraphic imaging in patients.
期刊介绍:
Written in English, NMR is a biannual international periodical of scientific and educational profile. It is a journal of Bulgarian, Czech, Hungarian, Macedonian, Polish, Romanian, Russian, Slovak, Ukrainian and Yugoslav Societies of Nuclear Medicine. The periodical focuses on all nuclear medicine topics (diagnostics as well as therapy), and presents original experimental scientific papers, reviews, case studies, letters also news about symposia and congresses. NMR is indexed at Index Copernicus (7.41), Scopus, EMBASE, Index Medicus/Medline, Ministry of Education 2007 (4 pts.).