Estimating the area under a receiver operating characteristic curve using partially ordered sets.

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Ehsan Zamanzade, Xinlei Wang
{"title":"Estimating the area under a receiver operating characteristic curve using partially ordered sets.","authors":"Ehsan Zamanzade,&nbsp;Xinlei Wang","doi":"10.1515/ijb-2019-0127","DOIUrl":null,"url":null,"abstract":"<p><p>Ranked set sampling (RSS), known as a cost-effective sampling technique, requires that the ranker gives a complete ranking of the units in each set. Frey (2012) proposed a modification of RSS based on partially ordered sets, referred to as RSS-t in this paper, to allow the ranker to declare ties as much as he/she wishes. We consider the problem of estimating the area under a receiver operating characteristics (ROC) curve using RSS-t samples. The area under the ROC curve (AUC) is commonly used as a measure for the effectiveness of diagnostic markers. We develop six nonparametric estimators of the AUC with/without utilizing tie information based on different approaches. We then compare the estimators using a Monte Carlo simulation and an empirical study with real data from the National Health and Nutrition Examination Survey. The results show that utilizing tie information increases the efficiency of estimating the AUC. Suggestions about when to choose which estimator are also made available to practitioners.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"17 1","pages":"139-152"},"PeriodicalIF":1.2000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2019-0127","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2019-0127","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Ranked set sampling (RSS), known as a cost-effective sampling technique, requires that the ranker gives a complete ranking of the units in each set. Frey (2012) proposed a modification of RSS based on partially ordered sets, referred to as RSS-t in this paper, to allow the ranker to declare ties as much as he/she wishes. We consider the problem of estimating the area under a receiver operating characteristics (ROC) curve using RSS-t samples. The area under the ROC curve (AUC) is commonly used as a measure for the effectiveness of diagnostic markers. We develop six nonparametric estimators of the AUC with/without utilizing tie information based on different approaches. We then compare the estimators using a Monte Carlo simulation and an empirical study with real data from the National Health and Nutrition Examination Survey. The results show that utilizing tie information increases the efficiency of estimating the AUC. Suggestions about when to choose which estimator are also made available to practitioners.

用部分有序集估计接收机工作特性曲线下的面积。
排名集抽样(RSS)是一种经济有效的抽样技术,它要求排名者给出每个集合中单元的完整排名。Frey(2012)提出了一种基于部分有序集的RSS修改方法,本文称之为RSS-t,允许排名者随心所欲地声明关系。我们考虑使用RSS-t样本估计接收者工作特征(ROC)曲线下面积的问题。ROC曲线下面积(AUC)通常被用来衡量诊断标记物的有效性。基于不同的方法,我们开发了6种使用/不使用tie信息的AUC非参数估计器。然后,我们使用蒙特卡罗模拟和国家健康和营养检查调查的真实数据的实证研究比较估计。结果表明,利用关联信息可以提高估计AUC的效率。关于何时选择哪个评估员的建议也提供给实践者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信