Utilizing Artificial Intelligence for Head and Neck Cancer Outcomes Prediction From Imaging.

Tricia Chinnery, Andrew Arifin, Keng Yeow Tay, Andrew Leung, Anthony C Nichols, David A Palma, Sarah A Mattonen, Pencilla Lang
{"title":"Utilizing Artificial Intelligence for Head and Neck Cancer Outcomes Prediction From Imaging.","authors":"Tricia Chinnery,&nbsp;Andrew Arifin,&nbsp;Keng Yeow Tay,&nbsp;Andrew Leung,&nbsp;Anthony C Nichols,&nbsp;David A Palma,&nbsp;Sarah A Mattonen,&nbsp;Pencilla Lang","doi":"10.1177/0846537120942134","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI)-based models have become a growing area of interest in predictive medicine and have the potential to aid physician decision-making to improve patient outcomes. Imaging and radiomics play an increasingly important role in these models. This review summarizes recent developments in the field of radiomics for AI in head and neck cancer. Prediction models for oncologic outcomes, treatment toxicity, and pathological findings have all been created. Exploratory studies are promising; however, validation studies that demonstrate consistency, reproducibility, and prognostic impact remain uncommon. Prospective clinical trials with standardized procedures are required for clinical translation.</p>","PeriodicalId":444006,"journal":{"name":"Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes","volume":" ","pages":"73-85"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0846537120942134","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0846537120942134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Artificial intelligence (AI)-based models have become a growing area of interest in predictive medicine and have the potential to aid physician decision-making to improve patient outcomes. Imaging and radiomics play an increasingly important role in these models. This review summarizes recent developments in the field of radiomics for AI in head and neck cancer. Prediction models for oncologic outcomes, treatment toxicity, and pathological findings have all been created. Exploratory studies are promising; however, validation studies that demonstrate consistency, reproducibility, and prognostic impact remain uncommon. Prospective clinical trials with standardized procedures are required for clinical translation.

利用人工智能预测头颈癌预后。
基于人工智能(AI)的模型已经成为预测医学中一个越来越受关注的领域,并有可能帮助医生做出决策,以改善患者的治疗效果。成像和放射组学在这些模型中发挥着越来越重要的作用。本文综述了放射组学在头颈部肿瘤人工智能治疗中的最新进展。肿瘤预后、治疗毒性和病理结果的预测模型都已建立。探索性研究是有希望的;然而,证实一致性、可重复性和预后影响的验证研究仍然罕见。临床转化需要标准化程序的前瞻性临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信