SUMOylation and calcium signalling: potential roles in the brain and beyond.

Q4 Neuroscience
Neuronal signaling Pub Date : 2017-07-19 eCollection Date: 2017-08-01 DOI:10.1042/NS20160010
Leticia Coelho-Silva, Gary J Stephens, Helena Cimarosti
{"title":"SUMOylation and calcium signalling: potential roles in the brain and beyond.","authors":"Leticia Coelho-Silva,&nbsp;Gary J Stephens,&nbsp;Helena Cimarosti","doi":"10.1042/NS20160010","DOIUrl":null,"url":null,"abstract":"<p><p>Small ubiquitin-like modifier (SUMO) conjugation (or SUMOylation) is a post-translational protein modification implicated in alterations to protein expression, localization and function. Despite a number of nuclear roles for SUMO being well characterized, this process has only started to be explored in relation to membrane proteins, such as ion channels. Calcium ion (Ca<sup>2+</sup>) signalling is crucial for the normal functioning of cells and is also involved in the pathophysiological mechanisms underlying relevant neurological and cardiovascular diseases. Intracellular Ca<sup>2+</sup> levels are tightly regulated; at rest, most Ca<sup>2+</sup> is retained in organelles, such as the sarcoplasmic reticulum, or in the extracellular space, whereas depolarization triggers a series of events leading to Ca<sup>2+</sup> entry, followed by extrusion and reuptake. The mechanisms that maintain Ca<sup>2+</sup> homoeostasis are candidates for modulation at the post-translational level. Here, we review the effects of protein SUMOylation, including Ca<sup>2+</sup> channels, their proteome and other proteins associated with Ca<sup>2+</sup> signalling, on vital cellular functions, such as neurotransmission within the central nervous system (CNS) and in additional systems, most prominently here, in the cardiac system.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"1 3","pages":"NS20160010"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1042/NS20160010","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuronal signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/NS20160010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 7

Abstract

Small ubiquitin-like modifier (SUMO) conjugation (or SUMOylation) is a post-translational protein modification implicated in alterations to protein expression, localization and function. Despite a number of nuclear roles for SUMO being well characterized, this process has only started to be explored in relation to membrane proteins, such as ion channels. Calcium ion (Ca2+) signalling is crucial for the normal functioning of cells and is also involved in the pathophysiological mechanisms underlying relevant neurological and cardiovascular diseases. Intracellular Ca2+ levels are tightly regulated; at rest, most Ca2+ is retained in organelles, such as the sarcoplasmic reticulum, or in the extracellular space, whereas depolarization triggers a series of events leading to Ca2+ entry, followed by extrusion and reuptake. The mechanisms that maintain Ca2+ homoeostasis are candidates for modulation at the post-translational level. Here, we review the effects of protein SUMOylation, including Ca2+ channels, their proteome and other proteins associated with Ca2+ signalling, on vital cellular functions, such as neurotransmission within the central nervous system (CNS) and in additional systems, most prominently here, in the cardiac system.

Abstract Image

sumo酰化和钙信号传导:在大脑内外的潜在作用。
小泛素样修饰物(Small ubiquitin-like modifier, SUMO)偶联(SUMOylation)是一种涉及蛋白质表达、定位和功能改变的翻译后蛋白质修饰。尽管SUMO的许多核作用已被很好地表征,但这一过程仅开始与膜蛋白(如离子通道)相关的探索。钙离子(Ca2+)信号对细胞的正常功能至关重要,也参与相关神经和心血管疾病的病理生理机制。细胞内Ca2+水平受到严格调控;休息时,大多数Ca2+保留在细胞器中,如肌浆网或细胞外空间,而去极化触发一系列事件,导致Ca2+进入,随后是挤压和再摄取。维持Ca2+平衡的机制是翻译后水平调节的候选机制。在这里,我们回顾了蛋白质SUMOylation的影响,包括Ca2+通道,他们的蛋白质组和其他蛋白质与Ca2+信号,对重要的细胞功能,如神经传递在中枢神经系统(CNS)和其他系统,最突出的是在这里,在心脏系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信