Amnah M Alshangiti, Sean L Wyatt, Erin McCarthy, Louise M Collins, Shane V Hegarty, Aideen M Sullivan, Gerard W O'Keeffe
{"title":"Association of distinct type 1 bone morphogenetic protein receptors with different molecular pathways and survival outcomes in neuroblastoma.","authors":"Amnah M Alshangiti, Sean L Wyatt, Erin McCarthy, Louise M Collins, Shane V Hegarty, Aideen M Sullivan, Gerard W O'Keeffe","doi":"10.1042/NS20200006","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroblastoma (NB) is a paediatric cancer that arises in the sympathetic nervous system. Patients with stage 4 tumours have poor outcomes and 20% of high-risk cases have <i>MYCN</i> amplification. The bone morphogenetic proteins (BMPs) play roles in sympathetic neuritogenesis, by signalling through bone morphogenetic protein receptor (BMPR)2 and either BMPR1A or BMPR1B. Alterations in BMPR2 expression have been reported in NB; it is unknown if the expression of BMPR1A or BMPR1B is altered. We report lower <i>BMPR2</i> and <i>BMPR1B</i>, and higher <i>BMPR1A</i>, expression in stage 4 and in <i>MYCN</i>-amplified NB. Kaplan-Meier plots showed that high <i>BMPR2</i> or <i>BMPR1B</i> expression was linked to better survival, while high <i>BMPR1A</i> was linked to worse survival. Gene ontology enrichment and pathway analyses revealed that <i>BMPR2</i> and <i>BMPR1B</i> co-expressed genes were enriched in those associated with NB differentiation. <i>BMPR1A</i> co-expressed genes were enriched in those associated with cell proliferation. Moreover, the correlation between <i>BMPR2</i> and <i>BMPR1A</i> was strengthened, while the correlation between <i>BMPR2</i> and <i>BMPR1B</i> was lost, in <i>MYCN</i>-amplified NB. This suggested that differentiation should decrease <i>BMPR1A</i> and increase <i>BMPR1B</i> expression. In agreement, nerve growth factor treatment of cultured sympathetic neurons decreased <i>Bmpr1a</i> expression and increased <i>Bmpr1b</i> expression. Overexpression of dominant negative BMPR1B, treatment with a BMPR1B inhibitor and treatment with GDF5, which signals via BMPR1B, showed that BMPR1B signalling is required for optimal neuritogenesis in NB cells, suggesting that loss of <i>BMPR1B</i> may alter neuritogenesis. The present study shows that expression of distinct BMPRs is associated with different survival outcomes in NB.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"4 1","pages":"NS20200006"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366490/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuronal signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/NS20200006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 3
Abstract
Neuroblastoma (NB) is a paediatric cancer that arises in the sympathetic nervous system. Patients with stage 4 tumours have poor outcomes and 20% of high-risk cases have MYCN amplification. The bone morphogenetic proteins (BMPs) play roles in sympathetic neuritogenesis, by signalling through bone morphogenetic protein receptor (BMPR)2 and either BMPR1A or BMPR1B. Alterations in BMPR2 expression have been reported in NB; it is unknown if the expression of BMPR1A or BMPR1B is altered. We report lower BMPR2 and BMPR1B, and higher BMPR1A, expression in stage 4 and in MYCN-amplified NB. Kaplan-Meier plots showed that high BMPR2 or BMPR1B expression was linked to better survival, while high BMPR1A was linked to worse survival. Gene ontology enrichment and pathway analyses revealed that BMPR2 and BMPR1B co-expressed genes were enriched in those associated with NB differentiation. BMPR1A co-expressed genes were enriched in those associated with cell proliferation. Moreover, the correlation between BMPR2 and BMPR1A was strengthened, while the correlation between BMPR2 and BMPR1B was lost, in MYCN-amplified NB. This suggested that differentiation should decrease BMPR1A and increase BMPR1B expression. In agreement, nerve growth factor treatment of cultured sympathetic neurons decreased Bmpr1a expression and increased Bmpr1b expression. Overexpression of dominant negative BMPR1B, treatment with a BMPR1B inhibitor and treatment with GDF5, which signals via BMPR1B, showed that BMPR1B signalling is required for optimal neuritogenesis in NB cells, suggesting that loss of BMPR1B may alter neuritogenesis. The present study shows that expression of distinct BMPRs is associated with different survival outcomes in NB.