Stability analysis in a mosquito population suppression model.

IF 1.8 4区 数学 Q3 ECOLOGY
Genghong Lin, Yuanxian Hui
{"title":"Stability analysis in a mosquito population suppression model.","authors":"Genghong Lin,&nbsp;Yuanxian Hui","doi":"10.1080/17513758.2020.1792565","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we study a non-autonomous differential equation model for the interaction of wild and sterile mosquitoes. Suppose that the number of sterile mosquitoes released in the field is a given nonnegative continuous function. We determine a threshold [Formula: see text] for the number of sterile mosquitoes and provide a sufficient condition for the origin [Formula: see text] to be globally asymptotically stable based on the threshold [Formula: see text]. For the case when the number of sterile mosquitoes keeps at a constant level, we find that the origin [Formula: see text] is globally asymptotically stable if and only if the constant number [Formula: see text] of sterile mosquitoes released in the field is above [Formula: see text].</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"578-589"},"PeriodicalIF":1.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1792565","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2020.1792565","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 13

Abstract

In this work, we study a non-autonomous differential equation model for the interaction of wild and sterile mosquitoes. Suppose that the number of sterile mosquitoes released in the field is a given nonnegative continuous function. We determine a threshold [Formula: see text] for the number of sterile mosquitoes and provide a sufficient condition for the origin [Formula: see text] to be globally asymptotically stable based on the threshold [Formula: see text]. For the case when the number of sterile mosquitoes keeps at a constant level, we find that the origin [Formula: see text] is globally asymptotically stable if and only if the constant number [Formula: see text] of sterile mosquitoes released in the field is above [Formula: see text].

蚊子种群抑制模型的稳定性分析。
在这项工作中,我们研究了野生和不育蚊子相互作用的非自治微分方程模型。假设在野外释放的不育蚊子的数量是一个给定的非负连续函数。我们确定了不育蚊子数量的阈值[公式:见文本],并根据阈值[公式:见文本]为来源[公式:见文本]提供了全局渐近稳定的充分条件。对于不育蚊数量保持一定水平的情况,我们发现原点[公式:见文]全局渐近稳定当且仅当野外释放的不育蚊数量[公式:见文]大于[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信