M Jabed A Choudhury, Philip M J Trevelyan, Graeme P Boswell
{"title":"Mathematical modelling of fungi-initiated siderophore-iron interactions.","authors":"M Jabed A Choudhury, Philip M J Trevelyan, Graeme P Boswell","doi":"10.1093/imammb/dqaa008","DOIUrl":null,"url":null,"abstract":"<p><p>Nearly all life forms require iron to survive and function. Microorganisms utilize a number of mechanisms to acquire iron including the production of siderophores, which are organic compounds that combine with ferric iron into forms that are easily absorbed by the microorganism. There has been significant experimental investigation into the role, distribution and function of siderophores in fungi but until now no predictive tools have been developed to qualify or quantify fungi-initiated siderophore-iron interactions. In this investigation, we construct the first mathematical models of siderophore function related to fungi. Initially, a set of partial differential equations are calibrated and integrated numerically to generate quantitative predictions on the spatio-temporal distributions of siderophores and related populations. This model is then reduced to a simpler set of equations that are solved algebraically giving rise to solutions that predict the distributions of siderophores and resultant compounds. These algebraic results require the calculation of zeros of cross products of Bessel functions and thus new algebraic expansions are derived for a variety of different cases that are in agreement with numerically computed values. The results of the modelling are consistent with experimental data while the analysis provides new quantitative predictions on the time scales involved between siderophore production and iron uptake along with how the total amount of iron acquired by the fungus depends on its environment. The implications to bio-technological applications are briefly discussed.</p>","PeriodicalId":49863,"journal":{"name":"Mathematical Medicine and Biology-A Journal of the Ima","volume":"37 4","pages":"515-550"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqaa008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Medicine and Biology-A Journal of the Ima","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqaa008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nearly all life forms require iron to survive and function. Microorganisms utilize a number of mechanisms to acquire iron including the production of siderophores, which are organic compounds that combine with ferric iron into forms that are easily absorbed by the microorganism. There has been significant experimental investigation into the role, distribution and function of siderophores in fungi but until now no predictive tools have been developed to qualify or quantify fungi-initiated siderophore-iron interactions. In this investigation, we construct the first mathematical models of siderophore function related to fungi. Initially, a set of partial differential equations are calibrated and integrated numerically to generate quantitative predictions on the spatio-temporal distributions of siderophores and related populations. This model is then reduced to a simpler set of equations that are solved algebraically giving rise to solutions that predict the distributions of siderophores and resultant compounds. These algebraic results require the calculation of zeros of cross products of Bessel functions and thus new algebraic expansions are derived for a variety of different cases that are in agreement with numerically computed values. The results of the modelling are consistent with experimental data while the analysis provides new quantitative predictions on the time scales involved between siderophore production and iron uptake along with how the total amount of iron acquired by the fungus depends on its environment. The implications to bio-technological applications are briefly discussed.
期刊介绍:
Formerly the IMA Journal of Mathematics Applied in Medicine and Biology.
Mathematical Medicine and Biology publishes original articles with a significant mathematical content addressing topics in medicine and biology. Papers exploiting modern developments in applied mathematics are particularly welcome. The biomedical relevance of mathematical models should be demonstrated clearly and validation by comparison against experiment is strongly encouraged.
The journal welcomes contributions relevant to any area of the life sciences including:
-biomechanics-
biophysics-
cell biology-
developmental biology-
ecology and the environment-
epidemiology-
immunology-
infectious diseases-
neuroscience-
pharmacology-
physiology-
population biology