{"title":"Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver.","authors":"Christel Geiss, Alexander Steinicke","doi":"10.1080/17442508.2019.1626859","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a Lévy process. In particular, we are interested in generators which satisfy a local Lipschitz condition in the <i>Z</i> and <i>U</i> variable. This includes settings of linear, quadratic and exponential growths in those variables. Extending an idea of Cheridito and Nam to the jump setting and applying comparison theorems for Lévy-driven BSDEs, we show existence, uniqueness, boundedness and Malliavin differentiability of a solution. The pivotal assumption to obtain these results is a boundedness condition on the terminal value <i>ξ</i> and its Malliavin derivative <math><mi>D</mi> <mi>ξ</mi></math> . Furthermore, we extend existence and uniqueness theorems to cases where the generator is not even locally Lipschitz in <i>U</i>. BSDEs of the latter type find use in exponential utility maximization.</p>","PeriodicalId":93054,"journal":{"name":"Stochastics (Abingdon, England : 2005)","volume":"92 3","pages":"418-453"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17442508.2019.1626859","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics (Abingdon, England : 2005)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17442508.2019.1626859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a Lévy process. In particular, we are interested in generators which satisfy a local Lipschitz condition in the Z and U variable. This includes settings of linear, quadratic and exponential growths in those variables. Extending an idea of Cheridito and Nam to the jump setting and applying comparison theorems for Lévy-driven BSDEs, we show existence, uniqueness, boundedness and Malliavin differentiability of a solution. The pivotal assumption to obtain these results is a boundedness condition on the terminal value ξ and its Malliavin derivative . Furthermore, we extend existence and uniqueness theorems to cases where the generator is not even locally Lipschitz in U. BSDEs of the latter type find use in exponential utility maximization.