Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver.

Stochastics (Abingdon, England : 2005) Pub Date : 2019-06-12 eCollection Date: 2020-01-01 DOI:10.1080/17442508.2019.1626859
Christel Geiss, Alexander Steinicke
{"title":"Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver.","authors":"Christel Geiss,&nbsp;Alexander Steinicke","doi":"10.1080/17442508.2019.1626859","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a Lévy process. In particular, we are interested in generators which satisfy a local Lipschitz condition in the <i>Z</i> and <i>U</i> variable. This includes settings of linear, quadratic and exponential growths in those variables. Extending an idea of Cheridito and Nam to the jump setting and applying comparison theorems for Lévy-driven BSDEs, we show existence, uniqueness, boundedness and Malliavin differentiability of a solution. The pivotal assumption to obtain these results is a boundedness condition on the terminal value <i>ξ</i> and its Malliavin derivative <math><mi>D</mi> <mi>ξ</mi></math> . Furthermore, we extend existence and uniqueness theorems to cases where the generator is not even locally Lipschitz in <i>U</i>. BSDEs of the latter type find use in exponential utility maximization.</p>","PeriodicalId":93054,"journal":{"name":"Stochastics (Abingdon, England : 2005)","volume":"92 3","pages":"418-453"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17442508.2019.1626859","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics (Abingdon, England : 2005)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17442508.2019.1626859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a Lévy process. In particular, we are interested in generators which satisfy a local Lipschitz condition in the Z and U variable. This includes settings of linear, quadratic and exponential growths in those variables. Extending an idea of Cheridito and Nam to the jump setting and applying comparison theorems for Lévy-driven BSDEs, we show existence, uniqueness, boundedness and Malliavin differentiability of a solution. The pivotal assumption to obtain these results is a boundedness condition on the terminal value ξ and its Malliavin derivative D ξ . Furthermore, we extend existence and uniqueness theorems to cases where the generator is not even locally Lipschitz in U. BSDEs of the latter type find use in exponential utility maximization.

具有局部Lipschitz驱动的lsamv驱动BSDEs的存在唯一性和Malliavin可微性。
研究了一类lsamvy过程驱动的倒向随机微分方程的可解性和Malliavin可微性的条件。特别地,我们感兴趣的是在Z和U变量中满足局部Lipschitz条件的生成器。这包括这些变量的线性、二次和指数增长的设置。将Cheridito和Nam的思想推广到跳跃设置中,并应用比较定理证明了解的存在性、唯一性、有界性和Malliavin可微性。得到这些结果的关键假设是终端值ξ及其Malliavin导数D ξ的有界条件。进一步,我们将存在唯一性定理推广到u中生成器甚至不是局部Lipschitz的情况,后者的BSDEs在指数效用最大化中得到了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信