下载PDF
{"title":"Human-Induced Pluripotent Stem Cell Culture Methods Under cGMP Conditions","authors":"Teresa Rivera, Yuanyuan Zhao, Yuhui Ni, Jiwu Wang","doi":"10.1002/cpsc.117","DOIUrl":null,"url":null,"abstract":"<p>The discovery of induced pluripotent stem cells (iPSCs) revolutionized the approach to cell therapy in regenerative medicine. Reprogramming of somatic cells into an embryonic-like pluripotent state provides an invaluable resource of patient-specific cells of any lineage. Implementation of procedures and protocols adapted to current good manufacturing practice (cGMP) requirements is critical to ensure robust and consistent high-quality iPSC manufacturing. The technology developed at Allele Biotechnology for iPSC generation under cGMP conditions is a powerful platform for derivation of pluripotent stem cells through a footprint-free, feeder-free, and xeno-free reprogramming method. The cGMP process established by Allele Biotechnology entails fully cGMP compliant iPSC lines where the entire manufacturing process, from tissue collection, cell reprogramming, cell expansion, cell banking and quality control testing are adopted. Previously, we described in this series of publications how to create iPSCs using mRNA only, and how to do so under cGMP conditions. In this article, we describe in detail how to culture, examine and storage cGMP-iPSCs using reagents, materials and equipment compliant with cGMP standards. © 2020 The Authors.</p><p><b>Basic Protocol 1</b>: iPSC Dissociation</p><p><b>Support Protocol 1</b>: Stem cell media</p><p><b>Support Protocol 2</b>: ROCK inhibitor preparation</p><p><b>Support Protocol 3</b>: Vitronectin coating</p><p><b>Basic Protocol 2</b>: iPSC Cryopreservation</p><p><b>Basic Protocol 3</b>: iPSC Thawing</p>","PeriodicalId":53703,"journal":{"name":"Current Protocols in Stem Cell Biology","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpsc.117","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Stem Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpsc.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 25
引用
批量引用
Abstract
The discovery of induced pluripotent stem cells (iPSCs) revolutionized the approach to cell therapy in regenerative medicine. Reprogramming of somatic cells into an embryonic-like pluripotent state provides an invaluable resource of patient-specific cells of any lineage. Implementation of procedures and protocols adapted to current good manufacturing practice (cGMP) requirements is critical to ensure robust and consistent high-quality iPSC manufacturing. The technology developed at Allele Biotechnology for iPSC generation under cGMP conditions is a powerful platform for derivation of pluripotent stem cells through a footprint-free, feeder-free, and xeno-free reprogramming method. The cGMP process established by Allele Biotechnology entails fully cGMP compliant iPSC lines where the entire manufacturing process, from tissue collection, cell reprogramming, cell expansion, cell banking and quality control testing are adopted. Previously, we described in this series of publications how to create iPSCs using mRNA only, and how to do so under cGMP conditions. In this article, we describe in detail how to culture, examine and storage cGMP-iPSCs using reagents, materials and equipment compliant with cGMP standards. © 2020 The Authors.
Basic Protocol 1 : iPSC Dissociation
Support Protocol 1 : Stem cell media
Support Protocol 2 : ROCK inhibitor preparation
Support Protocol 3 : Vitronectin coating
Basic Protocol 2 : iPSC Cryopreservation
Basic Protocol 3 : iPSC Thawing
cGMP条件下人诱导多能干细胞培养方法
诱导多能干细胞(iPSCs)的发现彻底改变了再生医学中的细胞治疗方法。体细胞重编程进入胚胎样多能状态为任何谱系的患者特异性细胞提供了宝贵的资源。实施符合现行良好生产规范(cGMP)要求的程序和协议对于确保稳健和一致的高质量iPSC生产至关重要。Allele Biotechnology开发的在cGMP条件下生成iPSC的技术是一个强大的平台,可以通过无足迹、无喂食和无异种重编程方法衍生多能干细胞。由Allele Biotechnology建立的cGMP流程需要完全符合cGMP的iPSC系,其中整个制造过程,从组织收集,细胞重编程,细胞扩增,细胞库和质量控制测试都采用。在此之前,我们在本系列出版物中描述了如何仅使用mRNA创建iPSCs,以及如何在cGMP条件下这样做。在本文中,我们详细描述了如何使用符合cGMP标准的试剂、材料和设备培养、检测和储存cGMP- ipscs。©2020作者。基本协议1:iPSC解离支持协议1:干细胞介质支持协议2:ROCK抑制剂制备支持协议3:玻璃体连接蛋白涂层基本协议2:iPSC冷冻保存基本协议3:iPSC解冻
本文章由计算机程序翻译,如有差异,请以英文原文为准。