Descent of Bacteria and Eukarya From an Archaeal Root of Life.

IF 1.7 4区 生物学 Q4 EVOLUTIONARY BIOLOGY
Evolutionary Bioinformatics Pub Date : 2020-06-23 eCollection Date: 2020-01-01 DOI:10.1177/1176934320908267
Xi Long, Hong Xue, J Tze-Fei Wong
{"title":"Descent of Bacteria and Eukarya From an Archaeal Root of Life.","authors":"Xi Long, Hong Xue, J Tze-Fei Wong","doi":"10.1177/1176934320908267","DOIUrl":null,"url":null,"abstract":"<p><p>The 3 biological domains delineated based on small subunit ribosomal RNAs (SSU rRNAs) are confronted by uncertainties regarding the relationship between Archaea and Bacteria, and the origin of Eukarya. The similarities between the paralogous valyl-tRNA and isoleucyl-tRNA synthetases in 5398 species estimated by BLASTP, which decreased from Archaea to Bacteria and further to Eukarya, were consistent with vertical gene transmission from an archaeal root of life close to <i>Methanopyrus kandleri</i> through a Primitive Archaea Cluster to an Ancestral Bacteria Cluster, and to Eukarya. The predominant similarities of the ribosomal proteins (rProts) of eukaryotes toward archaeal rProts relative to bacterial rProts established that an archaeal parent rather than a bacterial parent underwent genome merger with bacteria to generate eukaryotes with mitochondria. Eukaryogenesis benefited from the predominantly archaeal <i>accelerated gene adoption</i> (AGA) phenotype pertaining to horizontally transferred genes from other prokaryotes and expedited genome evolution via both gene-content mutations and nucleotidyl mutations. Archaeons endowed with substantial AGA activity were accordingly favored as candidate archaeal parents. Based on the top similarity bitscores displayed by their proteomes toward the eukaryotic proteomes of <i>Giardia</i> and <i>Trichomonas</i>, and high AGA activity, the <i>Aciduliprofundum</i> archaea were identified as leading candidates of the archaeal parent. The <i>Asgard</i> archaeons and a number of bacterial species were among the foremost potential contributors of eukaryotic-like proteins to Eukarya.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"16 ","pages":"1176934320908267"},"PeriodicalIF":1.7000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1176934320908267","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/1176934320908267","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 13

Abstract

The 3 biological domains delineated based on small subunit ribosomal RNAs (SSU rRNAs) are confronted by uncertainties regarding the relationship between Archaea and Bacteria, and the origin of Eukarya. The similarities between the paralogous valyl-tRNA and isoleucyl-tRNA synthetases in 5398 species estimated by BLASTP, which decreased from Archaea to Bacteria and further to Eukarya, were consistent with vertical gene transmission from an archaeal root of life close to Methanopyrus kandleri through a Primitive Archaea Cluster to an Ancestral Bacteria Cluster, and to Eukarya. The predominant similarities of the ribosomal proteins (rProts) of eukaryotes toward archaeal rProts relative to bacterial rProts established that an archaeal parent rather than a bacterial parent underwent genome merger with bacteria to generate eukaryotes with mitochondria. Eukaryogenesis benefited from the predominantly archaeal accelerated gene adoption (AGA) phenotype pertaining to horizontally transferred genes from other prokaryotes and expedited genome evolution via both gene-content mutations and nucleotidyl mutations. Archaeons endowed with substantial AGA activity were accordingly favored as candidate archaeal parents. Based on the top similarity bitscores displayed by their proteomes toward the eukaryotic proteomes of Giardia and Trichomonas, and high AGA activity, the Aciduliprofundum archaea were identified as leading candidates of the archaeal parent. The Asgard archaeons and a number of bacterial species were among the foremost potential contributors of eukaryotic-like proteins to Eukarya.

Abstract Image

Abstract Image

Abstract Image

细菌和真核生物从古细菌的生命根源演化而来。
基于小亚基核糖体rna (SSU rrna)划定的3个生物结构域面临着关于古细菌和细菌之间关系以及真核生物起源的不确定性。BLASTP分析的5398个物种中谷氨酸- trna和异质基- trna合成酶的相似性,从古细菌到细菌,再到真核生物,呈下降趋势,这与基因从接近kandlermethanopyrus的古细菌根,通过原始古细菌群到祖先细菌群,再到真核生物的垂直传播是一致的。真核生物的核糖体蛋白(rProts)与古细菌的rProts相对于细菌的rProts的主要相似性表明,古细菌亲本而不是细菌亲本通过与细菌的基因组合并来产生具有线粒体的真核生物。真核发生主要得益于古细菌加速基因采用(AGA)表型,这种表型与其他原核生物水平转移的基因有关,并通过基因含量突变和核苷酸突变加速了基因组进化。因此,具有大量AGA活性的古菌被认为是古菌亲本。基于它们的蛋白质组与贾第鞭毛虫和毛滴虫的真核蛋白质组的最高相似性,以及较高的AGA活性,确定了aciduliproundum古细菌是古菌亲本的主要候选菌株。阿斯加德古菌和一些细菌物种是真核生物类蛋白质的主要潜在贡献者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Bioinformatics
Evolutionary Bioinformatics 生物-进化生物学
CiteScore
4.20
自引率
0.00%
发文量
25
审稿时长
12 months
期刊介绍: Evolutionary Bioinformatics is an open access, peer reviewed international journal focusing on evolutionary bioinformatics. The journal aims to support understanding of organismal form and function through use of molecular, genetic, genomic and proteomic data by giving due consideration to its evolutionary context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信