Karla Mychellyne Costa Oliveira, Liudmila Leppik, Khyati Keswani, Sreeraj Rajeev, Mit B Bhavsar, Dirk Henrich, John H Barker
{"title":"Electrical Stimulation Decreases Dental Pulp Stem Cell Osteo-/Odontogenic Differentiation.","authors":"Karla Mychellyne Costa Oliveira, Liudmila Leppik, Khyati Keswani, Sreeraj Rajeev, Mit B Bhavsar, Dirk Henrich, John H Barker","doi":"10.1089/biores.2020.0002","DOIUrl":null,"url":null,"abstract":"<p><p>Dental pulp stem cells (DPSCs) have great potential for use in tissue engineering (TE)-based dental treatments. Electrical stimulation (EStim) has been shown to influence cellular functions that could play an important role in the success of TE treatments. Despite many recent studies focused on DPSCs, few have investigated the effect EStim has on these cells. The aim of this research was to investigate the effects of direct current (DC) EStim on osteo-/odontogenic differentiation of DPSCs. To do so cells were isolated from male Sprague Dawley rats (7-8 weeks old), and phenotype characterization and multilineage differentiation analysis were conducted to verify their \"stemness.\" Different voltages of DC EStim were administrated 1 h/day for 7 days, and the effect of EStim on DPSC osteo-/odontogenic differentiation was assessed by measuring calcium and collagen deposition, alkaline phosphatase (ALP) activity, and expression of osteo- and odontogenic marker genes at days 7 and 14 of culture. We found that while 10 and 50 mV/mm of EStim had no effect on cell number or metabolic activity, 100 mV/mm caused a significant reduction in cell number, and 150 mV/mm resulted in cell death. Despite increased gene expression of osteo-/odontogenic gene markers, <i>Osteocalcin</i>, <i>RunX2</i>, <i>BSP</i>, and <i>DMP1</i>, at day 7 in EStim treated cells, 50 mV/mm of EStim decreased collagen deposition and ALP activity at both time points, and calcium deposition was found to be lower at day 14. In conclusion, under the conditions tested, EStim appears to impair DPSC osteo-/odontogenic differentiation. Additional studies are needed to further characterize and understand the mechanisms involved in DPSC response to EStim, with an eye toward its potential use in TE-based dental treatments.</p>","PeriodicalId":9100,"journal":{"name":"BioResearch Open Access","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioResearch Open Access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/biores.2020.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Dental pulp stem cells (DPSCs) have great potential for use in tissue engineering (TE)-based dental treatments. Electrical stimulation (EStim) has been shown to influence cellular functions that could play an important role in the success of TE treatments. Despite many recent studies focused on DPSCs, few have investigated the effect EStim has on these cells. The aim of this research was to investigate the effects of direct current (DC) EStim on osteo-/odontogenic differentiation of DPSCs. To do so cells were isolated from male Sprague Dawley rats (7-8 weeks old), and phenotype characterization and multilineage differentiation analysis were conducted to verify their "stemness." Different voltages of DC EStim were administrated 1 h/day for 7 days, and the effect of EStim on DPSC osteo-/odontogenic differentiation was assessed by measuring calcium and collagen deposition, alkaline phosphatase (ALP) activity, and expression of osteo- and odontogenic marker genes at days 7 and 14 of culture. We found that while 10 and 50 mV/mm of EStim had no effect on cell number or metabolic activity, 100 mV/mm caused a significant reduction in cell number, and 150 mV/mm resulted in cell death. Despite increased gene expression of osteo-/odontogenic gene markers, Osteocalcin, RunX2, BSP, and DMP1, at day 7 in EStim treated cells, 50 mV/mm of EStim decreased collagen deposition and ALP activity at both time points, and calcium deposition was found to be lower at day 14. In conclusion, under the conditions tested, EStim appears to impair DPSC osteo-/odontogenic differentiation. Additional studies are needed to further characterize and understand the mechanisms involved in DPSC response to EStim, with an eye toward its potential use in TE-based dental treatments.
BioResearch Open AccessBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
自引率
0.00%
发文量
1
期刊介绍:
BioResearch Open Access is a high-quality open access journal providing peer-reviewed research on a broad range of scientific topics, including molecular and cellular biology, tissue engineering, regenerative medicine, stem cells, gene therapy, systems biology, genetics, virology, and neuroscience. The Journal publishes basic science and translational research in the form of original research articles, comprehensive review articles, mini-reviews, rapid communications, brief reports, technology reports, hypothesis articles, perspectives, and letters to the editor.