On a problem of Pillai with Fibonacci numbers and powers of 3.

IF 0.9 Q2 MATHEMATICS
Mahadi Ddamulira
{"title":"On a problem of Pillai with Fibonacci numbers and powers of 3.","authors":"Mahadi Ddamulira","doi":"10.1007/s40590-019-00263-1","DOIUrl":null,"url":null,"abstract":"<p><p>Consider the sequence <math> <msub><mrow><mo>{</mo> <msub><mi>F</mi> <mi>n</mi></msub> <mo>}</mo></mrow> <mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </math> of Fibonacci numbers defined by <math> <mrow><msub><mi>F</mi> <mn>0</mn></msub> <mo>=</mo> <mn>0</mn></mrow> </math> , <math> <mrow><msub><mi>F</mi> <mn>1</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> , and <math> <mrow><msub><mi>F</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>2</mn></mrow> </msub> <mo>=</mo> <msub><mi>F</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mo>+</mo> <msub><mi>F</mi> <mi>n</mi></msub> </mrow> </math> for all <math><mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </math> . In this paper, we find all integers <i>c</i> having at least two representations as a difference between a Fibonacci number and a power of 3.</p>","PeriodicalId":45404,"journal":{"name":"BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40590-019-00263-1","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40590-019-00263-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/9/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

Consider the sequence { F n } n 0 of Fibonacci numbers defined by F 0 = 0 , F 1 = 1 , and F n + 2 = F n + 1 + F n for all n 0 . In this paper, we find all integers c having at least two representations as a difference between a Fibonacci number and a power of 3.

关于具有斐波那契数和3次幂的Pillai问题。
认为《斐波那契序列{F n的n≥0的数字):由F - 0 = 0, F = 1和n + 2 = F F F n + 1 + n的所有n≥0。在这篇论文中,我们发现所有的情报c中至少有两种表现作为斐波那契数和三种权力的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
70
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信