Elizabeth A Shirtcliff, Gabriele R Lubach, Reilly Mooney, Robert T Beck, Laurel K Fanning, Christopher L Coe
{"title":"Transgenerational propensities for infant birth weight reflect fetal growth history of the mother in rhesus monkeys.","authors":"Elizabeth A Shirtcliff, Gabriele R Lubach, Reilly Mooney, Robert T Beck, Laurel K Fanning, Christopher L Coe","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Birth weight (BW) at delivery is an important developmental milestone indicative of prenatal conditions and portends of the postnatal growth trajectory that will occur during infancy and childhood. Previous research has documented that there are also many physiological and health consequences of being born either small-for-gestational age (SGA) or large-for-gestational age (LGA). Analyses of breeding animals have demonstrated further that a gravid female exerts a strong influence on the size of her infant by term, and this permissiveness or constraint over fetal growth can be transmitted from mothers to their daughters. The following research tested additional hypotheses about matrilineal effects on BW by examining records from a large breeding colony of rhesus monkeys across multiple generations. The analyses utilized BW of 1710 infant monkeys obtained over 4 decades. In addition to determining the association between the birth weight (BW) of a female and her own infants birthed later as a mother, the multi-generational transmission of birth size from a grandmother through her daughters to the next generation was examined. Other maternal influences were evident, including a progressive increase in infant BW with parity, which synergized with matrilineal effects across a female's reproductive life. In addition, our modeling indicated that if an infant's BW was discordant-a SGA female birthing a larger daughter-the discrepant fetal growth pattern could be accentuated in the next generation. Overall, the findings confirm that the size of an infant at term is significantly influenced by a type of gestational imprinting on daughters during the prenatal period, which then continues to shape birth outcomes in subsequent generations.</p>","PeriodicalId":75257,"journal":{"name":"Trends in developmental biology","volume":"12 ","pages":"55-65"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331457/pdf/nihms-1600388.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in developmental biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Birth weight (BW) at delivery is an important developmental milestone indicative of prenatal conditions and portends of the postnatal growth trajectory that will occur during infancy and childhood. Previous research has documented that there are also many physiological and health consequences of being born either small-for-gestational age (SGA) or large-for-gestational age (LGA). Analyses of breeding animals have demonstrated further that a gravid female exerts a strong influence on the size of her infant by term, and this permissiveness or constraint over fetal growth can be transmitted from mothers to their daughters. The following research tested additional hypotheses about matrilineal effects on BW by examining records from a large breeding colony of rhesus monkeys across multiple generations. The analyses utilized BW of 1710 infant monkeys obtained over 4 decades. In addition to determining the association between the birth weight (BW) of a female and her own infants birthed later as a mother, the multi-generational transmission of birth size from a grandmother through her daughters to the next generation was examined. Other maternal influences were evident, including a progressive increase in infant BW with parity, which synergized with matrilineal effects across a female's reproductive life. In addition, our modeling indicated that if an infant's BW was discordant-a SGA female birthing a larger daughter-the discrepant fetal growth pattern could be accentuated in the next generation. Overall, the findings confirm that the size of an infant at term is significantly influenced by a type of gestational imprinting on daughters during the prenatal period, which then continues to shape birth outcomes in subsequent generations.