Two different areas of the nucleus glomerulosus in the South American pufferfish, Colomesus asellus.

IF 1.1 4区 医学 Q4 NEUROSCIENCES
Matthias Schmidt
{"title":"Two different areas of the nucleus glomerulosus in the South American pufferfish, <i>Colomesus asellus</i>.","authors":"Matthias Schmidt","doi":"10.1017/S0952523820000012","DOIUrl":null,"url":null,"abstract":"<p><p>The nucleus glomerulosus (NG) in paracanthopterygian and acanthopterygian teleost fishes receives afferents from neurons of the nucleus corticalis (NC), whose dendrites extend to the layers, stratum fibrosum et griseum superficiale (SFGS) and stratum griseum centrale (SGC), of the tectum opticum. A re-examination in this study revealed, by means of tracer experiments using biotinylated dextran amine, a separation among both tectal layers, portions of the NC, and target areas in a laminated type of the NG in the South American pufferfish, Colomesus asellus. Neurons of the lateral part of the NC send their dendrites to the SFGS and project to an area located dorsolaterally and centrally in the NG. In contrast, dendrites from neurons of the medial part of the NC run to the SGC, and projections from these neurons terminate in the NG in an area extending from dorsomedial to ventrolateral in the outer portion. Therefore, these two areas in the NG receive input from different sources. The NG in the visual system of tetraodontids may be involved in higher cognitive functions requiring much energy, becoming apparent by its very high level of cytochrome c oxidase activity.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0952523820000012","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523820000012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

The nucleus glomerulosus (NG) in paracanthopterygian and acanthopterygian teleost fishes receives afferents from neurons of the nucleus corticalis (NC), whose dendrites extend to the layers, stratum fibrosum et griseum superficiale (SFGS) and stratum griseum centrale (SGC), of the tectum opticum. A re-examination in this study revealed, by means of tracer experiments using biotinylated dextran amine, a separation among both tectal layers, portions of the NC, and target areas in a laminated type of the NG in the South American pufferfish, Colomesus asellus. Neurons of the lateral part of the NC send their dendrites to the SFGS and project to an area located dorsolaterally and centrally in the NG. In contrast, dendrites from neurons of the medial part of the NC run to the SGC, and projections from these neurons terminate in the NG in an area extending from dorsomedial to ventrolateral in the outer portion. Therefore, these two areas in the NG receive input from different sources. The NG in the visual system of tetraodontids may be involved in higher cognitive functions requiring much energy, becoming apparent by its very high level of cytochrome c oxidase activity.

南美河豚肾小球核的两个不同区域。
副棘鱼和棘鱼的肾小球核(NG)接收皮质核(NC)神经元的传入信号,皮质核的树突延伸到视顶盖的纤维层和浅灰层(SFGS)和中灰层(SGC)。在这项研究中,通过使用生物素化右旋糖酐胺的示踪实验,在南美河豚(Colomesus asellus)的一种层压型NG中,两层、NC部分和靶区域之间存在分离。NC外侧部分的神经元将其树突发送到SFGS,并投射到位于NG背外侧和中央的区域。相反,NC内侧神经元的树突向SGC延伸,这些神经元的突起在外侧从背内侧延伸到腹外侧的区域终止于NG。因此,NG中的这两个区域接收来自不同来源的输入。四齿兽视觉系统中的NG可能参与需要大量能量的高级认知功能,其细胞色素c氧化酶活性非常高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Neuroscience
Visual Neuroscience 医学-神经科学
CiteScore
2.20
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信