Analytical Capability of High-Time Resolution-Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry for the Elemental and Isotopic Analysis of Metal Nanoparticles.
{"title":"Analytical Capability of High-Time Resolution-Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry for the Elemental and Isotopic Analysis of Metal Nanoparticles.","authors":"Takafumi Hirata, Shuji Yamashita, Mirai Ishida, Toshihiro Suzuki","doi":"10.5702/massspectrometry.A0085","DOIUrl":null,"url":null,"abstract":"<p><p>We measured the Re/Os (<sup>185</sup>Re/<sup>188</sup>Os) and <sup>187</sup>Os/<sup>188</sup>Os ratios from nanoparticles (NPs) using a multiple collector-inductively coupled plasma-mass spectrometer equipped with high-time resolution ion counters (HTR-MC-ICP-MS). Using the HTR-MC-ICP-MS system developed in this study, the simultaneous data acquisition of four isotopes was possible with a time resolution of up to 10 μs. This permits the quantitative analysis of four isotopes to be carried out from transient signals (<i>e.g.</i>, <0.6 ms) emanating from the NPs. Iridium-Osmium NPs were produced from a naturally occurring Ir-Os alloy (ruthenosmiridium from Hokkaido, Japan; osmiridium from British Columbia, Canada; iridosmine from the Urals region of Russia) through a laser ablation technique, and the resulting nanoparticles were collected by bubbling water through a suspension. The <sup>187</sup>Os/<sup>188</sup>Os ratios for individual NPs varied significantly, mainly due to the counting statistics of the <sup>187</sup>Os and <sup>188</sup>Os signals. Despite the large variation in the measured ratios, the resulting <sup>187</sup>Os/<sup>188</sup>Os ratios for three Ir-Os bearing minerals, were 0.121±0.013 for Hokkaido, 0.110±0.012 for British Columbia, and 0.122±0.020 for the Urals, and these values were in agreement with the ratios obtained by the conventional laser ablation-MC-ICP-MS technique. The data obtained here provides a clear demonstration that the HTR-MC-ICP-MS technique can become a powerful tool for monitoring elemental and isotope ratios from NPs of multiple components.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"9 1","pages":"A0085"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291549/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.A0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 7
Abstract
We measured the Re/Os (185Re/188Os) and 187Os/188Os ratios from nanoparticles (NPs) using a multiple collector-inductively coupled plasma-mass spectrometer equipped with high-time resolution ion counters (HTR-MC-ICP-MS). Using the HTR-MC-ICP-MS system developed in this study, the simultaneous data acquisition of four isotopes was possible with a time resolution of up to 10 μs. This permits the quantitative analysis of four isotopes to be carried out from transient signals (e.g., <0.6 ms) emanating from the NPs. Iridium-Osmium NPs were produced from a naturally occurring Ir-Os alloy (ruthenosmiridium from Hokkaido, Japan; osmiridium from British Columbia, Canada; iridosmine from the Urals region of Russia) through a laser ablation technique, and the resulting nanoparticles were collected by bubbling water through a suspension. The 187Os/188Os ratios for individual NPs varied significantly, mainly due to the counting statistics of the 187Os and 188Os signals. Despite the large variation in the measured ratios, the resulting 187Os/188Os ratios for three Ir-Os bearing minerals, were 0.121±0.013 for Hokkaido, 0.110±0.012 for British Columbia, and 0.122±0.020 for the Urals, and these values were in agreement with the ratios obtained by the conventional laser ablation-MC-ICP-MS technique. The data obtained here provides a clear demonstration that the HTR-MC-ICP-MS technique can become a powerful tool for monitoring elemental and isotope ratios from NPs of multiple components.