Yunfeng Liu, Zhiming Guo, Mohammad El Smaily, Lin Wang
{"title":"A <i>Wolbachia</i> infection model with free boundary.","authors":"Yunfeng Liu, Zhiming Guo, Mohammad El Smaily, Lin Wang","doi":"10.1080/17513758.2020.1784474","DOIUrl":null,"url":null,"abstract":"<p><p>Scientists have been seeking ways to use <i>Wolbachia</i> to eliminate the mosquitoes that spread human diseases. Could <i>Wolbachia</i> be the determining factor in controlling the mosquito-borne infectious diseases? To answer this question mathematically, we develop a reaction-diffusion model with free boundary in a one-dimensional environment. We divide the female mosquito population into two groups: one is the uninfected mosquito population that grows in the whole region while the other is the mosquito population infected with <i>Wolbachia</i> that occupies a finite small region. The mosquito population infected with <i>Wolbachia</i> invades the environment with a spreading front governed by a free boundary satisfying the well-known one-phase Stefan condition. For the resulting free boundary problem, we establish criteria under which spreading and vanishing occur. Our results provide useful insights on designing a feasible mosquito releasing strategy that infects the whole mosquito population with <i>Wolbachia</i> and eradicates the mosquito-borne diseases eventually.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"515-542"},"PeriodicalIF":1.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1784474","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2020.1784474","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Scientists have been seeking ways to use Wolbachia to eliminate the mosquitoes that spread human diseases. Could Wolbachia be the determining factor in controlling the mosquito-borne infectious diseases? To answer this question mathematically, we develop a reaction-diffusion model with free boundary in a one-dimensional environment. We divide the female mosquito population into two groups: one is the uninfected mosquito population that grows in the whole region while the other is the mosquito population infected with Wolbachia that occupies a finite small region. The mosquito population infected with Wolbachia invades the environment with a spreading front governed by a free boundary satisfying the well-known one-phase Stefan condition. For the resulting free boundary problem, we establish criteria under which spreading and vanishing occur. Our results provide useful insights on designing a feasible mosquito releasing strategy that infects the whole mosquito population with Wolbachia and eradicates the mosquito-borne diseases eventually.
期刊介绍:
Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.