Integrating Literature-Based Knowledge Database and Expression Data to Explore Molecular Pathways Connecting PPARG and Myocardial Infarction.

IF 3.5 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
PPAR Research Pub Date : 2020-06-01 eCollection Date: 2020-01-01 DOI:10.1155/2020/1892375
Rongyuan Cao, Yan Dong, Kamil Can Kural
{"title":"Integrating Literature-Based Knowledge Database and Expression Data to Explore Molecular Pathways Connecting PPARG and Myocardial Infarction.","authors":"Rongyuan Cao,&nbsp;Yan Dong,&nbsp;Kamil Can Kural","doi":"10.1155/2020/1892375","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxisome proliferator-activated receptor <i>γ</i> (PPARG) might play a protective role in the development of myocardial infarction (MI) with limited mechanisms identified. Genes associated with both PPARG and MI were extracted from Elsevier Pathway Studio to construct the initial network. The gene expression activity within the network was estimated through a mega-analysis with eight independent expression datasets derived from Gene Expression Omnibus (GEO) to build PPARG and MI connecting pathways. After that, gene set enrichment analysis (GSEA) was conducted to explore the functional profile of the genes involved in the PPARG-driven network. PPARG demonstrated a significantly low expression in MI patients (LFC = -0.52; <i>p</i> < 1.84<i>e</i> - 9). Consequently, PPARG could indicatively be promoting three MI inhibitors (e.g., SOD1, CAV1, and POU5F1) and three MI-downregulated markers (e.g., ALB, ACADM, and ADIPOR2), which were deactivated in MI cases (<i>p</i> < 0.05), and inhibit two MI-upregulated markers (RELA and MYD88), which showed increased expression levels in MI cases (<i>p</i> = 0.0077 and 0.047, respectively). These eight genes were mainly enriched in nutrient- and cell metabolic-related pathways and functionally linked by GSEA and PPCN. Our results suggest that PPARG could protect the heart against both the development and progress of MI through the regulation of nutrient- and metabolic-related pathways.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/1892375","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2020/1892375","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2

Abstract

Peroxisome proliferator-activated receptor γ (PPARG) might play a protective role in the development of myocardial infarction (MI) with limited mechanisms identified. Genes associated with both PPARG and MI were extracted from Elsevier Pathway Studio to construct the initial network. The gene expression activity within the network was estimated through a mega-analysis with eight independent expression datasets derived from Gene Expression Omnibus (GEO) to build PPARG and MI connecting pathways. After that, gene set enrichment analysis (GSEA) was conducted to explore the functional profile of the genes involved in the PPARG-driven network. PPARG demonstrated a significantly low expression in MI patients (LFC = -0.52; p < 1.84e - 9). Consequently, PPARG could indicatively be promoting three MI inhibitors (e.g., SOD1, CAV1, and POU5F1) and three MI-downregulated markers (e.g., ALB, ACADM, and ADIPOR2), which were deactivated in MI cases (p < 0.05), and inhibit two MI-upregulated markers (RELA and MYD88), which showed increased expression levels in MI cases (p = 0.0077 and 0.047, respectively). These eight genes were mainly enriched in nutrient- and cell metabolic-related pathways and functionally linked by GSEA and PPCN. Our results suggest that PPARG could protect the heart against both the development and progress of MI through the regulation of nutrient- and metabolic-related pathways.

Abstract Image

Abstract Image

整合文献知识库与表达数据探索PPARG与心肌梗死的分子通路。
过氧化物酶体增殖物激活受体γ (PPARG)可能在心肌梗死(MI)的发展中发挥保护作用,但机制有限。从Elsevier Pathway Studio中提取与PPARG和MI相关的基因,构建初始网络。通过对来自gene expression Omnibus (GEO)的8个独立表达数据集进行大型分析,估计网络内的基因表达活性,以构建PPARG和MI连接通路。之后,进行基因集富集分析(GSEA)来探索参与ppar驱动网络的基因的功能谱。PPARG在心肌梗死患者中低表达(LFC = -0.52;p < 1.84e - 9)。因此,PPARG可以指示性地促进三种MI抑制剂(如SOD1, CAV1和POU5F1)和三种MI下调标志物(如ALB, ACADM和ADIPOR2),这些标志物在MI病例中失活(p < 0.05),并抑制两种MI上调标志物(RELA和MYD88),它们在MI病例中表达水平升高(p分别= 0.0077和0.047)。这8个基因主要富集于营养和细胞代谢相关通路中,并与GSEA和PPCN有功能联系。我们的研究结果表明,PPARG可以通过调节营养和代谢相关途径来保护心脏免受心肌梗死的发生和进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PPAR Research
PPAR Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.20
自引率
3.40%
发文量
17
审稿时长
12 months
期刊介绍: PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信