{"title":"Artificial Intelligence Medical Ultrasound Equipment: Application of Breast Lesions Detection.","authors":"Xuesheng Zhang, Xiaona Lin, Zihao Zhang, Licong Dong, Xinlong Sun, Desheng Sun, Kehong Yuan","doi":"10.1177/0161734620928453","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer ranks first among cancers affecting women's health. Our work aims to realize the intelligence of the medical ultrasound equipment with limited computational capability, which is used for the assistant detection of breast lesions. We embed the high-computational deep learning algorithm into the medical ultrasound equipment with limited computational capability by two techniques: (1) lightweight neural network: considering the limited computational capability of ultrasound equipment, a lightweight neural network is designed, which greatly reduces the amount of calculation. And we use the technique of knowledge distillation to train the low-precision network helped with the high-precision network; (2) asynchronous calculations: consider four frames of ultrasound images as a group; the image of the first frame of each group is used as the input of the network, and the result is respectively fused with the images of the fourth to seventh frames. An amount of computation of 30 GFLO/frame is required for the proposed lightweight neural network, about 1/6 of that of the large high-precision network. After trained from scratch using the knowledge distillation technique, the detection performance of the lightweight neural network (sensitivity = 89.25%, specificity = 96.33%, the average precision [AP] = 0.85) is close to that of the high-precision network (sensitivity = 98.3%, specificity = 88.33%, AP = 0.91). By asynchronous calculation, we achieve real-time automatic detection of 24 fps (frames per second) on the ultrasound equipment. Our work proposes a method to realize the intelligence of the low-computation-power ultrasonic equipment, and successfully achieves the real-time assistant detection of breast lesions. The significance of the study is as follows: (1) The proposed method is of practical significance in assisting doctors to detect breast lesions; (2) our method provides some practical and theoretical support for the development and engineering of intelligent equipment based on artificial intelligence algorithms.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":"42 4-5","pages":"191-202"},"PeriodicalIF":2.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0161734620928453","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0161734620928453","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 17
Abstract
Breast cancer ranks first among cancers affecting women's health. Our work aims to realize the intelligence of the medical ultrasound equipment with limited computational capability, which is used for the assistant detection of breast lesions. We embed the high-computational deep learning algorithm into the medical ultrasound equipment with limited computational capability by two techniques: (1) lightweight neural network: considering the limited computational capability of ultrasound equipment, a lightweight neural network is designed, which greatly reduces the amount of calculation. And we use the technique of knowledge distillation to train the low-precision network helped with the high-precision network; (2) asynchronous calculations: consider four frames of ultrasound images as a group; the image of the first frame of each group is used as the input of the network, and the result is respectively fused with the images of the fourth to seventh frames. An amount of computation of 30 GFLO/frame is required for the proposed lightweight neural network, about 1/6 of that of the large high-precision network. After trained from scratch using the knowledge distillation technique, the detection performance of the lightweight neural network (sensitivity = 89.25%, specificity = 96.33%, the average precision [AP] = 0.85) is close to that of the high-precision network (sensitivity = 98.3%, specificity = 88.33%, AP = 0.91). By asynchronous calculation, we achieve real-time automatic detection of 24 fps (frames per second) on the ultrasound equipment. Our work proposes a method to realize the intelligence of the low-computation-power ultrasonic equipment, and successfully achieves the real-time assistant detection of breast lesions. The significance of the study is as follows: (1) The proposed method is of practical significance in assisting doctors to detect breast lesions; (2) our method provides some practical and theoretical support for the development and engineering of intelligent equipment based on artificial intelligence algorithms.
期刊介绍:
Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging