Shaojun Li, Wei Cao, Bai Wang, Enbo Zhan, Jian Xu, Shufeng Li
{"title":"TRIF/miR-34a mediates aldosterone-induced cardiac inflammation and remodeling.","authors":"Shaojun Li, Wei Cao, Bai Wang, Enbo Zhan, Jian Xu, Shufeng Li","doi":"10.1042/CS20200249","DOIUrl":null,"url":null,"abstract":"<p><p>Aldosterone, as a major product of renin-angiotensin-aldosterone system (RAAS), determines multiple pathophysiological processes in cardiovascular diseases. The excess inflammatory response is one of the key profiles in aldosterone-mediated cardiac remodeling. However, the potential mechanisms of aldosterone/inflammatory signaling were still not fully disclosed. The present study aimed to investigate whether TIR-domain-containing adapter-inducing interferon-β (Trif) participated in the aldosterone-induced cardiac remodeling, and to explore potential molecular mechanisms. Trif knockout mice and their littermates were osmotically administrated with aldosterone (50 μg/kg per day) for 21 and 42 days. The cardiac structural analysis, functional parameters, and mitochondrial function were measured. Aldosterone dose- or time-dependently increased the levels of TRIF in primary mouse cardiomyocytes or mouse heart tissues. Trif deficiency protected against aldosterone-induced cardiac hypertrophy, fibrosis and dysfunction. Moreover, Trif deficiency also suppressed aldosterone-induced cardiac inflammatory response and mitochondrial injuries. Mechanistically, overexpression of cardiac microRNAs (miR)-34a reversed the cardiac benefits of Trif deficiency in aldosterone-treated mice. Taken together, Trif/miR-34a axis could provide a novel molecular mechanism for explaining aldosterone-induced cardiac hypertrophy, fibrosis and functional disorders.</p>","PeriodicalId":519494,"journal":{"name":"Clinical Science (London, England : 1979)","volume":" ","pages":"1319-1331"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Science (London, England : 1979)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20200249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Aldosterone, as a major product of renin-angiotensin-aldosterone system (RAAS), determines multiple pathophysiological processes in cardiovascular diseases. The excess inflammatory response is one of the key profiles in aldosterone-mediated cardiac remodeling. However, the potential mechanisms of aldosterone/inflammatory signaling were still not fully disclosed. The present study aimed to investigate whether TIR-domain-containing adapter-inducing interferon-β (Trif) participated in the aldosterone-induced cardiac remodeling, and to explore potential molecular mechanisms. Trif knockout mice and their littermates were osmotically administrated with aldosterone (50 μg/kg per day) for 21 and 42 days. The cardiac structural analysis, functional parameters, and mitochondrial function were measured. Aldosterone dose- or time-dependently increased the levels of TRIF in primary mouse cardiomyocytes or mouse heart tissues. Trif deficiency protected against aldosterone-induced cardiac hypertrophy, fibrosis and dysfunction. Moreover, Trif deficiency also suppressed aldosterone-induced cardiac inflammatory response and mitochondrial injuries. Mechanistically, overexpression of cardiac microRNAs (miR)-34a reversed the cardiac benefits of Trif deficiency in aldosterone-treated mice. Taken together, Trif/miR-34a axis could provide a novel molecular mechanism for explaining aldosterone-induced cardiac hypertrophy, fibrosis and functional disorders.