Global stability analysis for a model with carriers and non-linear incidence rate.

IF 1.8 4区 数学 Q3 ECOLOGY
Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Patricia Lopez Molano
{"title":"Global stability analysis for a model with carriers and non-linear incidence rate.","authors":"Miller Cerón Gómez,&nbsp;Eduardo Ibarguen Mondragon,&nbsp;Patricia Lopez Molano","doi":"10.1080/17513758.2020.1772998","DOIUrl":null,"url":null,"abstract":"<p><p>We analysed a epidemiological model with varying populations of susceptible, carriers, infectious and recovered (SCIR) and a general non-linear incidence rate of the form [Formula: see text]. We show that this model exhibits two positive equilibriums: the disease-free and disease equilibrium. We proved using the Lyapunov direct method that these two equilibriums are globally asymptotically stable under some sufficient conditions over the functions <i>f</i>, <i>g</i>, <i>h</i>.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"409-420"},"PeriodicalIF":1.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1772998","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2020.1772998","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

We analysed a epidemiological model with varying populations of susceptible, carriers, infectious and recovered (SCIR) and a general non-linear incidence rate of the form [Formula: see text]. We show that this model exhibits two positive equilibriums: the disease-free and disease equilibrium. We proved using the Lyapunov direct method that these two equilibriums are globally asymptotically stable under some sufficient conditions over the functions f, g, h.

带载波和非线性发生率模型的全局稳定性分析。
我们分析了一个流行病学模型,该模型具有不同的易感人群、携带者、感染人群和康复人群(SCIR),以及这种形式的一般非线性发病率[公式:见文本]。我们证明了该模型具有两个正均衡:无病均衡和疾病均衡。我们用Lyapunov直接方法证明了这两个平衡点在函数f, g, h上的一些充分条件下是全局渐近稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信