{"title":"Viral G-quadruplexes: New frontiers in virus pathogenesis and antiviral therapy.","authors":"Emanuela Ruggiero, Sara N Richter","doi":"10.1016/bs.armc.2020.04.001","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses are the most abundant organisms on our planet, affecting all living beings: some of them are responsible for massive epidemics that concern health, national economies and the overall welfare of societies. Although advances in antiviral research have led to successful therapies against several human viruses, still some of them cannot be eradicated from the host and most of them do not have any treatment available. Consequently, innovative antiviral therapies are urgently needed. In the past few years, research on G-quadruplexes (G4s) in viruses has boomed, providing powerful evidence for the regulatory role of G4s in key viral steps. Comprehensive bioinformatics analyses have traced putative G4-forming sequences in the genome of almost all human viruses, showing that their distribution is statistically significant and their presence highly conserved. Since the genomes of viruses are remarkably variable, high conservation rates strongly suggest a crucial role of G4s in the viral replication cycle and evolution, emphasizing the possibility of targeting viral G4s as a new pharmacological approach in antiviral therapy. Recent studies have demonstrated the formation and function of G4s in pathogens responsible for serious diseases, such as HIV-1, Hepatitis B and C, Ebola viruses, to cite a few. In this chapter, we present the state of the art on the structural and functional characterization of viral G4s in RNA viruses, DNA viruses and retroviruses. We also present the G4 ligands that provide further details on the viral G4 role and which, showing promising antiviral activity, which could be exploited for the development of innovative antiviral agents.</p>","PeriodicalId":8033,"journal":{"name":"Annual Reports in Medicinal Chemistry","volume":"54 ","pages":"101-131"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reports in Medicinal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/bs.armc.2020.04.001","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
Viruses are the most abundant organisms on our planet, affecting all living beings: some of them are responsible for massive epidemics that concern health, national economies and the overall welfare of societies. Although advances in antiviral research have led to successful therapies against several human viruses, still some of them cannot be eradicated from the host and most of them do not have any treatment available. Consequently, innovative antiviral therapies are urgently needed. In the past few years, research on G-quadruplexes (G4s) in viruses has boomed, providing powerful evidence for the regulatory role of G4s in key viral steps. Comprehensive bioinformatics analyses have traced putative G4-forming sequences in the genome of almost all human viruses, showing that their distribution is statistically significant and their presence highly conserved. Since the genomes of viruses are remarkably variable, high conservation rates strongly suggest a crucial role of G4s in the viral replication cycle and evolution, emphasizing the possibility of targeting viral G4s as a new pharmacological approach in antiviral therapy. Recent studies have demonstrated the formation and function of G4s in pathogens responsible for serious diseases, such as HIV-1, Hepatitis B and C, Ebola viruses, to cite a few. In this chapter, we present the state of the art on the structural and functional characterization of viral G4s in RNA viruses, DNA viruses and retroviruses. We also present the G4 ligands that provide further details on the viral G4 role and which, showing promising antiviral activity, which could be exploited for the development of innovative antiviral agents.
期刊介绍:
Annual Reports in Medicinal Chemistry provides timely and critical reviews of important topics in medicinal chemistry with an emphasis on emerging topics in the biological sciences that are expected to provide the basis for entirely new future therapies.