D-optimal design for the Rasch counts model with multiple binary predictors.

Ulrike Graßhoff, Heinz Holling, Rainer Schwabe
{"title":"D-optimal design for the Rasch counts model with multiple binary predictors.","authors":"Ulrike Graßhoff,&nbsp;Heinz Holling,&nbsp;Rainer Schwabe","doi":"10.1111/bmsp.12204","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we derive optimal designs for the Rasch Poisson counts model and its extended version of the (generalized) negative binomial counts model incorporating several binary predictors for the difficulty parameter. To efficiently estimate the regression coefficients of the predictors, locally D-optimal designs are developed. After an introduction to the Rasch Poisson counts model and its extension, we will specify these models as particular generalized linear models. Based on this embedding, optimal designs for both models including several binary explanatory variables will be presented. Therefore, we will derive conditions on the effect sizes for certain designs to be locally D-optimal. Finally, it is pointed out that the results derived for the Rasch Poisson models can be applied for more general Poisson regression models which should receive more attention in future psychological research.</p>","PeriodicalId":272649,"journal":{"name":"The British journal of mathematical and statistical psychology","volume":"73 3","pages":"541-555"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/bmsp.12204","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British journal of mathematical and statistical psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we derive optimal designs for the Rasch Poisson counts model and its extended version of the (generalized) negative binomial counts model incorporating several binary predictors for the difficulty parameter. To efficiently estimate the regression coefficients of the predictors, locally D-optimal designs are developed. After an introduction to the Rasch Poisson counts model and its extension, we will specify these models as particular generalized linear models. Based on this embedding, optimal designs for both models including several binary explanatory variables will be presented. Therefore, we will derive conditions on the effect sizes for certain designs to be locally D-optimal. Finally, it is pointed out that the results derived for the Rasch Poisson models can be applied for more general Poisson regression models which should receive more attention in future psychological research.

具有多个二元预测因子的Rasch计数模型的d -最优设计。
在本文中,我们导出了Rasch Poisson计数模型及其扩展版本的(广义)负二项式计数模型的优化设计,该模型包含了难度参数的几个二进制预测因子。为了有效地估计预测因子的回归系数,提出了局部d -最优设计。在介绍了拉希泊松计数模型及其扩展之后,我们将把这些模型指定为特殊的广义线性模型。基于这种嵌入,两种模型的最优设计将包括几个二元解释变量。因此,我们将推导出某些设计达到局部d最优的效应大小的条件。最后指出,拉希泊松模型的结果可以应用于更一般的泊松回归模型,在今后的心理学研究中值得重视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信