In silico study of the binding of daunomycin and phenylalanine transfer RNA: probe molecular recognition for structure-based drug design†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Gonghao Wu, Jipeng Li, Jianxin Yang and Xingqing Xiao
{"title":"In silico study of the binding of daunomycin and phenylalanine transfer RNA: probe molecular recognition for structure-based drug design†","authors":"Gonghao Wu, Jipeng Li, Jianxin Yang and Xingqing Xiao","doi":"10.1039/D2ME00236A","DOIUrl":null,"url":null,"abstract":"<p >Rational designs of pharmaceutical compounds targeting specific RNAs require a comprehensive understanding of molecular recognition mechanisms. Knowledge of binding affinity and specificity can be gained <em>via</em> computational modeling and simulation techniques. In this work, an integrated computational strategy combining QM calculation, molecular docking, conventional and adaptive steered MD simulations, and the var-MM/GBSA approach was proposed to probe the binding behaviors of daunomycin (DAU) and phenylalanine transfer RNA (tRNA<small><sup>Phe</sup></small>) at a micro-scale level. Gathering experimental information enables us to eliminate improper predictions for the binding of DAU and tRNA<small><sup>Phe</sup></small>, and the calculations of PMF and Δ<em>G</em><small><sub>binding</sub></small> lead to the identification of the binding structure of the complex. Further, structural and energetic analysis of the DAU:tRNA<small><sup>Phe</sup></small> complex revealed that daunomycinone of DAU contributes the intermolecular VDW energies to nucleotides G<small><sub>15</sub></small>, C<small><sub>48</sub></small> and U<small><sub>59</sub></small> on tRNA<small><sup>Phe</sup></small>, responsible for the binding specificity; meanwhile daunosamine contributes the intermolecular ELE + EGB energies to U<small><sub>50</sub></small>, responsible for the binding affinity.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 6","pages":" 786-798"},"PeriodicalIF":3.2000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/me/d2me00236a","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rational designs of pharmaceutical compounds targeting specific RNAs require a comprehensive understanding of molecular recognition mechanisms. Knowledge of binding affinity and specificity can be gained via computational modeling and simulation techniques. In this work, an integrated computational strategy combining QM calculation, molecular docking, conventional and adaptive steered MD simulations, and the var-MM/GBSA approach was proposed to probe the binding behaviors of daunomycin (DAU) and phenylalanine transfer RNA (tRNAPhe) at a micro-scale level. Gathering experimental information enables us to eliminate improper predictions for the binding of DAU and tRNAPhe, and the calculations of PMF and ΔGbinding lead to the identification of the binding structure of the complex. Further, structural and energetic analysis of the DAU:tRNAPhe complex revealed that daunomycinone of DAU contributes the intermolecular VDW energies to nucleotides G15, C48 and U59 on tRNAPhe, responsible for the binding specificity; meanwhile daunosamine contributes the intermolecular ELE + EGB energies to U50, responsible for the binding affinity.

Abstract Image

道诺霉素与苯丙氨酸转移RNA结合的硅片研究:基于结构的药物设计探针分子识别
合理设计针对特定rna的药物化合物需要对分子识别机制有全面的了解。结合亲和力和特异性的知识可以通过计算建模和仿真技术获得。本文提出了一种结合QM计算、分子对接、传统和自适应导向MD模拟以及var-MM/GBSA方法的综合计算策略,在微观尺度上探索道诺霉素(DAU)与苯丙氨酸转移RNA (tRNAPhe)的结合行为。收集实验信息使我们能够消除对DAU和tRNAPhe结合的不正确预测,PMF和ΔGbinding的计算导致了复合物结合结构的识别。此外,对DAU:tRNAPhe复合物的结构和能量分析表明,DAU的daunomycinone为tRNAPhe上的核苷酸G15、C48和U59提供分子间的VDW能量,负责结合特异性;同时,daunosamine向U50提供分子间的ELE + EGB能量,负责结合亲和力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信