{"title":"Binary fission in Trichoplax is orthogonal to the subsequent division plane","authors":"Jorge Zuccolotto-Arellano, Rodrigo Cuervo-González","doi":"10.1016/j.mod.2020.103608","DOIUrl":null,"url":null,"abstract":"<div><p>Asexual reproduction in <em>Trichoplax</em> occurs mainly by binary fission and occasionally by the budding of epithelial spheres called “swarmers”. The process that leads to binary fission and the mechanisms involved in this segregation are practically unknown. <em>Trichoplax</em> lacks a defined shape, presenting a constantly changing outline due to its continuous movements and body contractions. For this reason, and due to the absence of anatomical references, it has been classified as an asymmetric organism. Here, we report that a transient wound is formed in the marginal epithelium of the two new individuals produced by binary fission. By tracking the location of this epithelial wound, we can determine that successive dichotomous divisions are orthogonal to the previous division. We also found that LiCl paralyzes the cilia beating movement and body contractions and causes the placozoans to become circular in shape. This effect, as well as a stereotypic body folding behavior observed in detached placozoans and cell labeling experiments of the upper epithelium, indicate a cylindrical body symmetry for Placozoa.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"162 ","pages":"Article 103608"},"PeriodicalIF":2.6000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2020.103608","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477320300137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 10
Abstract
Asexual reproduction in Trichoplax occurs mainly by binary fission and occasionally by the budding of epithelial spheres called “swarmers”. The process that leads to binary fission and the mechanisms involved in this segregation are practically unknown. Trichoplax lacks a defined shape, presenting a constantly changing outline due to its continuous movements and body contractions. For this reason, and due to the absence of anatomical references, it has been classified as an asymmetric organism. Here, we report that a transient wound is formed in the marginal epithelium of the two new individuals produced by binary fission. By tracking the location of this epithelial wound, we can determine that successive dichotomous divisions are orthogonal to the previous division. We also found that LiCl paralyzes the cilia beating movement and body contractions and causes the placozoans to become circular in shape. This effect, as well as a stereotypic body folding behavior observed in detached placozoans and cell labeling experiments of the upper epithelium, indicate a cylindrical body symmetry for Placozoa.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.