Restoring calcium homeostasis in diabetic cardiomyocytes: an investigation through mathematical modelling

IF 3.743 Q2 Biochemistry, Genetics and Molecular Biology
Phonindra Nath Das, Ajay Kumar, Nandadulal Bairagi and Samrat Chatterjee
{"title":"Restoring calcium homeostasis in diabetic cardiomyocytes: an investigation through mathematical modelling","authors":"Phonindra Nath Das, Ajay Kumar, Nandadulal Bairagi and Samrat Chatterjee","doi":"10.1039/C7MB00264E","DOIUrl":null,"url":null,"abstract":"<p >Calcium homeostasis is a key factor in the regulation of cardiac excitation–contraction coupling. Calcium dynamics in cardiomyocytes is governed by ATP which depends on insulin dependent glucose concentration, <em>via</em> the glucose transporter type 4 (GLUT4) transporter. It would therefore be interesting to see how calcium dynamics changes in a cardiomyocyte under diabetic conditions. We proposed and analysed a four dimensional ordinary differential equation (ODE) model to capture the interdependency of calcium dynamics on glucose uptake and ATP generation. More specifically, we looked for the role of GLUT4, energy metabolism, L-type channels, RyR2 channels, SERCA2a pumps and leakage rate in the normal functioning of cardiomyocytes. To understand the system dynamics, we first obtained the stability and Hopf-bifurcation criteria of steady state and then through parameter perturbation we captured the role of different parameters in maintaining normal calcium oscillation (frequency 40 to 180 beats per minute and amplitude ≥0.4 μM) and hence normal cardiac function. We observed that any divergence in the GLUT4 activity (especially a decrease in the glucose uptake rate) might cause abnormal calcium oscillation, leading to cardiac dysfunction (CD). Our study finally hypothesizes that a regulated sarcoplasmic reticulum (SR) calcium flux could be a possible therapeutic strategy to maintain normal calcium dynamics in diabetic heart and to prevent possible CD.</p>","PeriodicalId":90,"journal":{"name":"Molecular BioSystems","volume":null,"pages":null},"PeriodicalIF":3.7430,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C7MB00264E","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular BioSystems","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c7mb00264e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

Abstract

Calcium homeostasis is a key factor in the regulation of cardiac excitation–contraction coupling. Calcium dynamics in cardiomyocytes is governed by ATP which depends on insulin dependent glucose concentration, via the glucose transporter type 4 (GLUT4) transporter. It would therefore be interesting to see how calcium dynamics changes in a cardiomyocyte under diabetic conditions. We proposed and analysed a four dimensional ordinary differential equation (ODE) model to capture the interdependency of calcium dynamics on glucose uptake and ATP generation. More specifically, we looked for the role of GLUT4, energy metabolism, L-type channels, RyR2 channels, SERCA2a pumps and leakage rate in the normal functioning of cardiomyocytes. To understand the system dynamics, we first obtained the stability and Hopf-bifurcation criteria of steady state and then through parameter perturbation we captured the role of different parameters in maintaining normal calcium oscillation (frequency 40 to 180 beats per minute and amplitude ≥0.4 μM) and hence normal cardiac function. We observed that any divergence in the GLUT4 activity (especially a decrease in the glucose uptake rate) might cause abnormal calcium oscillation, leading to cardiac dysfunction (CD). Our study finally hypothesizes that a regulated sarcoplasmic reticulum (SR) calcium flux could be a possible therapeutic strategy to maintain normal calcium dynamics in diabetic heart and to prevent possible CD.

Abstract Image

恢复钙稳态在糖尿病心肌细胞:通过数学模型的研究
钙稳态是调节心脏兴奋-收缩耦合的关键因素。心肌细胞中的钙动力学由ATP控制,ATP通过葡萄糖转运蛋白4型(GLUT4)转运蛋白依赖于胰岛素依赖型葡萄糖浓度。因此,观察糖尿病条件下心肌细胞钙动力学的变化是很有趣的。我们提出并分析了一个四维常微分方程(ODE)模型,以捕捉钙动力学对葡萄糖摄取和ATP生成的相互依赖性。更具体地说,我们寻找了GLUT4、能量代谢、l型通道、RyR2通道、SERCA2a泵和泄漏率在心肌细胞正常功能中的作用。为了了解系统动力学,我们首先获得稳态稳定性和hopf分岔准则,然后通过参数摄动捕捉不同参数对维持正常钙振荡(频率40 ~ 180次/分钟,振幅≥0.4 μM)和正常心功能的作用。我们观察到,任何GLUT4活性的差异(尤其是葡萄糖摄取速率的降低)都可能引起异常的钙振荡,导致心功能障碍(CD)。我们的研究最终假设,调节肌浆网(SR)钙通量可能是维持糖尿病心脏正常钙动力学和预防可能的CD的一种可能的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular BioSystems
Molecular BioSystems 生物-生化与分子生物学
CiteScore
2.94
自引率
0.00%
发文量
0
审稿时长
2.6 months
期刊介绍: Molecular Omics publishes molecular level experimental and bioinformatics research in the -omics sciences, including genomics, proteomics, transcriptomics and metabolomics. We will also welcome multidisciplinary papers presenting studies combining different types of omics, or the interface of omics and other fields such as systems biology or chemical biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信