A Streaming model for Generalized Rayleigh with extension to Minimum Noise Fraction.

Soumyajit Gupta, Chandrajit Bajaj
{"title":"A Streaming model for Generalized Rayleigh with extension to Minimum Noise Fraction.","authors":"Soumyajit Gupta,&nbsp;Chandrajit Bajaj","doi":"10.1109/BigData47090.2019.9006512","DOIUrl":null,"url":null,"abstract":"<p><p>The Rayleigh quotient optimization is the maximization of a rational function, or a max-min problem, with simultaneous maximization of the numerator function and minimization of the denominator function. Here, we describe a low-rank, streaming solution for Rayleigh quotient optimization applicable for big-data scenarios where the data matrix is too large to be fully loaded into main memory. We apply this for a maximization of the Signal to Noise ratio of big-data, of very large static and dynamic data. Our implementation is shown to achieve faster processing time compared to a standard data read into memory. We demonstrate the trade-offs with synthetic and real data, on different scales to validate the approach in terms of accuracy, speed and storage.</p>","PeriodicalId":74501,"journal":{"name":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","volume":" ","pages":"74-83"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BigData47090.2019.9006512","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigData47090.2019.9006512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Rayleigh quotient optimization is the maximization of a rational function, or a max-min problem, with simultaneous maximization of the numerator function and minimization of the denominator function. Here, we describe a low-rank, streaming solution for Rayleigh quotient optimization applicable for big-data scenarios where the data matrix is too large to be fully loaded into main memory. We apply this for a maximization of the Signal to Noise ratio of big-data, of very large static and dynamic data. Our implementation is shown to achieve faster processing time compared to a standard data read into memory. We demonstrate the trade-offs with synthetic and real data, on different scales to validate the approach in terms of accuracy, speed and storage.

扩展到最小噪声分数的广义瑞利流模型。
瑞利商优化是一个有理函数的最大化问题,或一个极大极小问题,同时具有分子函数的最大化和分母函数的最小化。在这里,我们描述了一种低秩流解决方案,用于瑞利商优化,适用于数据矩阵太大而无法完全加载到主存的大数据场景。我们将此应用于大数据的信噪比最大化,非常大的静态和动态数据。与将标准数据读入内存相比,我们的实现实现了更快的处理时间。我们在不同的尺度上用合成数据和真实数据进行了权衡,以验证该方法在准确性、速度和存储方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信