{"title":"Poisson-noise weighted filter for time-of-flight positron emission tomography.","authors":"Gengsheng L Zeng, Li Lv, Qiu Huang","doi":"10.1186/s42492-020-00048-8","DOIUrl":null,"url":null,"abstract":"<p><p>Image reconstruction for list-mode time-of-flight (TOF) positron emission tomography (PET) can be achieved by analytic algorithms. The backprojection filtering (BPF) algorithm is an efficient algorithm for this task. The conventional noise control method for analytic image reconstruction is the use of a stationary lowpass filter, which does not model the Poisson noise properly. This study proposes a nonstationary filter for Poisson noise control. The filter is implemented in the spatial domain in a form similar to convolution.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"3 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-020-00048-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0
Abstract
Image reconstruction for list-mode time-of-flight (TOF) positron emission tomography (PET) can be achieved by analytic algorithms. The backprojection filtering (BPF) algorithm is an efficient algorithm for this task. The conventional noise control method for analytic image reconstruction is the use of a stationary lowpass filter, which does not model the Poisson noise properly. This study proposes a nonstationary filter for Poisson noise control. The filter is implemented in the spatial domain in a form similar to convolution.