{"title":"Asymptotic analysis of a vector-borne disease model with the age of infection.","authors":"Xia Wang, Yuming Chen, Maia Martcheva, Libin Rong","doi":"10.1080/17513758.2020.1745912","DOIUrl":null,"url":null,"abstract":"<p><p>Vector-borne infectious diseases may involve both horizontal transmission between hosts and transmission from infected vectors to susceptible hosts. In this paper, we incorporate these two transmission modes into a vector-borne disease model that includes general nonlinear incidence rates and the age of infection for both hosts and vectors. We show the existence, uniqueness, nonnegativity, and boundedness of solutions for the model. We study the existence and local stability of steady states, which is shown to be determined by the basic reproduction number. By showing the existence of a global compact attractor and uniform persistence of the system, we establish the threshold dynamics using the Fluctuation Lemma and the approach of Lyapunov functionals. When the basic reproduction number is less than one, the disease-free steady state is globally asymptotically stable and otherwise the disease will be established when there is initial infection force for the hosts. We also study a model with the standard incidence rate and discuss the effect of different incidence rates on the disease dynamics.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"332-367"},"PeriodicalIF":1.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1745912","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2020.1745912","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Vector-borne infectious diseases may involve both horizontal transmission between hosts and transmission from infected vectors to susceptible hosts. In this paper, we incorporate these two transmission modes into a vector-borne disease model that includes general nonlinear incidence rates and the age of infection for both hosts and vectors. We show the existence, uniqueness, nonnegativity, and boundedness of solutions for the model. We study the existence and local stability of steady states, which is shown to be determined by the basic reproduction number. By showing the existence of a global compact attractor and uniform persistence of the system, we establish the threshold dynamics using the Fluctuation Lemma and the approach of Lyapunov functionals. When the basic reproduction number is less than one, the disease-free steady state is globally asymptotically stable and otherwise the disease will be established when there is initial infection force for the hosts. We also study a model with the standard incidence rate and discuss the effect of different incidence rates on the disease dynamics.
期刊介绍:
Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.