A Novel Approach to Scaling Age-, Sex-, and Body Size-Dependent Thoracic Responses using Structural Properties of Human Ribs.

Q2 Medicine
Yun-Seok Kang, John H Bolte, Jason Stammen, Kevin Moorhouse, Amanda M Agnew
{"title":"A Novel Approach to Scaling Age-, Sex-, and Body Size-Dependent Thoracic Responses using Structural Properties of Human Ribs.","authors":"Yun-Seok Kang,&nbsp;John H Bolte,&nbsp;Jason Stammen,&nbsp;Kevin Moorhouse,&nbsp;Amanda M Agnew","doi":"10.4271/2019-22-0013","DOIUrl":null,"url":null,"abstract":"<p><p>Thoracic injuries are frequently observed in motor vehicle crashes, and rib fractures are the most common of those injuries. Thoracic response targets have previously been developed from data obtained from post-mortem human subject (PMHS) tests in frontal loading conditions, most commonly of mid-size males. Traditional scaling methods are employed to identify differences in thoracic response for various demographic groups, but it is often unknown if these applications are appropriate, especially considering the limited number of tested PMHS from which those scaling factors originate. Therefore, the objective of this study was to establish a new scaling approach for generating age-, sex-, and body size- dependent thoracic responses utilizing structural properties of human ribs from direct testing of various demographics. One-hundred forty-seven human ribs (140 adult; 7 pediatric) from 132 individuals (76 male; 52 female; 4 pediatric) ranging in age from 6 to 99 years were included in this study. Ribs were tested at 2 m/s to failure in a frontal impact scenario. Force and displacement for individual ribs were used to develop new scaling factors, with a traditional mid-size biomechanical target as a baseline response. This novel use of a large, varied dataset of dynamic whole rib responses offers vast possibilities to utilize existing biomechanical data in creative ways to reduce thoracic injuries in diverse vehicle occupants.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"63 ","pages":"307-329"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stapp car crash journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2019-22-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

Abstract

Thoracic injuries are frequently observed in motor vehicle crashes, and rib fractures are the most common of those injuries. Thoracic response targets have previously been developed from data obtained from post-mortem human subject (PMHS) tests in frontal loading conditions, most commonly of mid-size males. Traditional scaling methods are employed to identify differences in thoracic response for various demographic groups, but it is often unknown if these applications are appropriate, especially considering the limited number of tested PMHS from which those scaling factors originate. Therefore, the objective of this study was to establish a new scaling approach for generating age-, sex-, and body size- dependent thoracic responses utilizing structural properties of human ribs from direct testing of various demographics. One-hundred forty-seven human ribs (140 adult; 7 pediatric) from 132 individuals (76 male; 52 female; 4 pediatric) ranging in age from 6 to 99 years were included in this study. Ribs were tested at 2 m/s to failure in a frontal impact scenario. Force and displacement for individual ribs were used to develop new scaling factors, with a traditional mid-size biomechanical target as a baseline response. This novel use of a large, varied dataset of dynamic whole rib responses offers vast possibilities to utilize existing biomechanical data in creative ways to reduce thoracic injuries in diverse vehicle occupants.

一种利用人体肋骨结构特性来衡量年龄、性别和体型相关的胸部反应的新方法。
在机动车碰撞事故中经常观察到胸部损伤,而肋骨骨折是最常见的损伤。胸部反应靶点以前是从正面负荷条件下的死后人体受试者(PMHS)试验中获得的数据开发出来的,最常见的是中等身材的男性。传统的评分方法用于确定不同人群的胸部反应差异,但通常不知道这些应用是否合适,特别是考虑到测试的PMHS数量有限,这些评分因子来源于PMHS。因此,本研究的目的是建立一种新的缩放方法,利用从各种人口统计数据中直接测试的人类肋骨的结构特性来产生与年龄、性别和体型相关的胸部反应。147根肋骨(成人140根;7名儿童),来自132名个体(76名男性;52岁女性;年龄从6岁到99岁的4名儿童被纳入本研究。在正面碰撞场景中,肋骨以2m /s的速度进行了失效测试。单个肋骨的力和位移被用来开发新的比例因子,以传统的中型生物力学目标作为基线响应。这种对全肋骨动态反应数据集的新颖使用,为利用现有生物力学数据以创造性的方式减少不同车辆乘员的胸部损伤提供了巨大的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stapp car crash journal
Stapp car crash journal Medicine-Medicine (all)
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信