{"title":"[Comparative Verification of DNA Extraction Methods for Bacterial Nucleic Acid Amplification Test].","authors":"Yuya Hirata, Kazuyuki Sugahara, Hiroki Hanaiwa, Yumiko Funashima, Kenichi Sato, Zenzo Nagasawa, Tsukuru Umemura","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic testing is widely used as a rapid diagnostic method to identify microorganisms and detect antibiotic resistance genes. The nucleic acid to be analyzed is located inside the cell wall, the cell membrane or nuclear envelope. Therefore, it is essential to disassemble them in nucleic acid extraction operation. It is also necessary to remove or inactivate interfering substances by exposing cytoplasmic components accompanying cell disruption. Nucleic acid extraction is an indispensable task, but depending on the selected method, it may have a significant effect on the genetic test results. However, the DNA extraction method that is actually selected tends to emphasize work efficiency, and the appropriate evaluation of the extraction operation is neglected. In this study, we focused on the purity of the extracted DNA, and examined six existing extraction methods and original extraction methods using Gram-negative bacilli as a simple model. As a result, there was a large difference in DNA purity depending on the extraction method. When used in a qualitative gene amplification test, there was a difference in the shading of the bands. However, the detection of resistance genes all gave similar results. Furthermore, as a result of using the original extraction method, the extraction method using sodium decylbenzenesulfonate (SDBS) was the most excellent extraction method from the viewpoint of recovered DNA and operability.</p>","PeriodicalId":74740,"journal":{"name":"Rinsho Biseibutsu Jinsoku Shindan Kenkyukai shi = JARMAM : Journal of the Association for Rapid Method and Automation in Microbiology","volume":"29 2","pages":"65-74"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rinsho Biseibutsu Jinsoku Shindan Kenkyukai shi = JARMAM : Journal of the Association for Rapid Method and Automation in Microbiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic testing is widely used as a rapid diagnostic method to identify microorganisms and detect antibiotic resistance genes. The nucleic acid to be analyzed is located inside the cell wall, the cell membrane or nuclear envelope. Therefore, it is essential to disassemble them in nucleic acid extraction operation. It is also necessary to remove or inactivate interfering substances by exposing cytoplasmic components accompanying cell disruption. Nucleic acid extraction is an indispensable task, but depending on the selected method, it may have a significant effect on the genetic test results. However, the DNA extraction method that is actually selected tends to emphasize work efficiency, and the appropriate evaluation of the extraction operation is neglected. In this study, we focused on the purity of the extracted DNA, and examined six existing extraction methods and original extraction methods using Gram-negative bacilli as a simple model. As a result, there was a large difference in DNA purity depending on the extraction method. When used in a qualitative gene amplification test, there was a difference in the shading of the bands. However, the detection of resistance genes all gave similar results. Furthermore, as a result of using the original extraction method, the extraction method using sodium decylbenzenesulfonate (SDBS) was the most excellent extraction method from the viewpoint of recovered DNA and operability.