Zoran Boskovic, Sonja Meier, Yunpeng Wang, Michael R Milne, Tessa Onraet, Angelo Tedoldi, Elizabeth J Coulson
{"title":"Regulation of cholinergic basal forebrain development, connectivity, and function by neurotrophin receptors.","authors":"Zoran Boskovic, Sonja Meier, Yunpeng Wang, Michael R Milne, Tessa Onraet, Angelo Tedoldi, Elizabeth J Coulson","doi":"10.1042/NS20180066","DOIUrl":null,"url":null,"abstract":"<p><p>Cholinergic basal forebrain (cBF) neurons are defined by their expression of the p75 neurotrophin receptor (p75<sup>NTR</sup>) and tropomyosin-related kinase (Trk) neurotrophin receptors in addition to cholinergic markers. It is known that the neurotrophins, particularly nerve growth factor (NGF), mediate cholinergic neuronal development and maintenance. However, the role of neurotrophin signalling in regulating adult cBF function is less clear, although in dementia, trophic signalling is reduced and p75<sup>NTR</sup> mediates neurodegeneration of cBF neurons. Here we review the current understanding of how cBF neurons are regulated by neurotrophins which activate p75<sup>NTR</sup> and TrkA, B or C to influence the critical role that these neurons play in normal cortical function, particularly higher order cognition. Specifically, we describe the current evidence that neurotrophins regulate the development of basal forebrain neurons and their role in maintaining and modifying mature basal forebrain synaptic and cortical microcircuit connectivity. Understanding the role neurotrophin signalling plays in regulating the precision of cholinergic connectivity will contribute to the understanding of normal cognitive processes and will likely provide additional ideas for designing improved therapies for the treatment of neurological disease in which cholinergic dysfunction has been demonstrated.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"3 1","pages":"NS20180066"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuronal signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/NS20180066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
Cholinergic basal forebrain (cBF) neurons are defined by their expression of the p75 neurotrophin receptor (p75NTR) and tropomyosin-related kinase (Trk) neurotrophin receptors in addition to cholinergic markers. It is known that the neurotrophins, particularly nerve growth factor (NGF), mediate cholinergic neuronal development and maintenance. However, the role of neurotrophin signalling in regulating adult cBF function is less clear, although in dementia, trophic signalling is reduced and p75NTR mediates neurodegeneration of cBF neurons. Here we review the current understanding of how cBF neurons are regulated by neurotrophins which activate p75NTR and TrkA, B or C to influence the critical role that these neurons play in normal cortical function, particularly higher order cognition. Specifically, we describe the current evidence that neurotrophins regulate the development of basal forebrain neurons and their role in maintaining and modifying mature basal forebrain synaptic and cortical microcircuit connectivity. Understanding the role neurotrophin signalling plays in regulating the precision of cholinergic connectivity will contribute to the understanding of normal cognitive processes and will likely provide additional ideas for designing improved therapies for the treatment of neurological disease in which cholinergic dysfunction has been demonstrated.