Unconventional height functions in simultaneous Diophantine approximation.

Pub Date : 2017-01-01 Epub Date: 2016-10-18 DOI:10.1007/s00605-016-0983-0
Lior Fishman, David Simmons
{"title":"Unconventional height functions in simultaneous Diophantine approximation.","authors":"Lior Fishman,&nbsp;David Simmons","doi":"10.1007/s00605-016-0983-0","DOIUrl":null,"url":null,"abstract":"<p><p>Simultaneous Diophantine approximation is concerned with the approximation of a point <math><mrow><mi>x</mi> <mo>∈</mo> <msup><mi>R</mi> <mi>d</mi></msup> </mrow> </math> by points <math><mrow><mi>r</mi> <mo>∈</mo> <msup><mi>Q</mi> <mi>d</mi></msup> </mrow> </math> , with a view towards jointly minimizing the quantities <math><mrow><mo>‖</mo> <mi>x</mi> <mo>-</mo> <mi>r</mi> <mo>‖</mo></mrow> </math> and <math><mrow><mi>H</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </math> . Here <math><mrow><mi>H</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </math> is the so-called \"standard height\" of the rational point <math><mi>r</mi></math> . In this paper the authors ask: What changes if we replace the standard height function by a different one? As it turns out, this change leads to dramatic differences from the classical theory and requires the development of new methods. We discuss three examples of nonstandard height functions, computing their exponents of irrationality as well as giving more precise results. A list of open questions is also given.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-016-0983-0","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-016-0983-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/10/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Simultaneous Diophantine approximation is concerned with the approximation of a point x R d by points r Q d , with a view towards jointly minimizing the quantities x - r and H ( r ) . Here H ( r ) is the so-called "standard height" of the rational point r . In this paper the authors ask: What changes if we replace the standard height function by a different one? As it turns out, this change leads to dramatic differences from the classical theory and requires the development of new methods. We discuss three examples of nonstandard height functions, computing their exponents of irrationality as well as giving more precise results. A list of open questions is also given.

分享
查看原文
在同时的丢番图近似中,非常规高度函数。
同时Diophantine近似关注的是点x∈R d对点R∈Q d的近似,目的是使量‖x - R‖和H (R)共同最小化。这里H (r)是有理点r的所谓“标准高度”。在本文中,作者提出了一个问题:如果我们用一个不同的高度函数代替标准的高度函数,会有什么变化?事实证明,这种变化导致了与经典理论的巨大差异,需要发展新的方法。我们讨论了三个非标准高度函数的例子,计算了它们的非理性指数,并给出了更精确的结果。还列出了一些悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信