{"title":"Efficient Nonparametric Causal Inference with Missing Exposure Information.","authors":"Edward H Kennedy","doi":"10.1515/ijb-2019-0087","DOIUrl":null,"url":null,"abstract":"<p><p>Missing exposure information is a very common feature of many observational studies. Here we study identifiability and efficient estimation of causal effects on vector outcomes, in such cases where treatment is unconfounded but partially missing. We consider a missing at random setting where missingness in treatment can depend not only on complex covariates, but also on post-treatment outcomes. We give a new identifying expression for average treatment effects in this setting, along with the efficient influence function for this parameter in a nonparametric model, which yields a nonparametric efficiency bound. We use this latter result to construct nonparametric estimators that are less sensitive to the curse of dimensionality than usual, e. g. by having faster rates of convergence than the complex nuisance estimators they rely on. Further we show that these estimators can be root-n consistent and asymptotically normal under weak nonparametric conditions, even when constructed using flexible machine learning. Finally we apply these results to the problem of causal inference with a partially missing instrumental variable.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"16 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2019-0087","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2019-0087","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 15
Abstract
Missing exposure information is a very common feature of many observational studies. Here we study identifiability and efficient estimation of causal effects on vector outcomes, in such cases where treatment is unconfounded but partially missing. We consider a missing at random setting where missingness in treatment can depend not only on complex covariates, but also on post-treatment outcomes. We give a new identifying expression for average treatment effects in this setting, along with the efficient influence function for this parameter in a nonparametric model, which yields a nonparametric efficiency bound. We use this latter result to construct nonparametric estimators that are less sensitive to the curse of dimensionality than usual, e. g. by having faster rates of convergence than the complex nuisance estimators they rely on. Further we show that these estimators can be root-n consistent and asymptotically normal under weak nonparametric conditions, even when constructed using flexible machine learning. Finally we apply these results to the problem of causal inference with a partially missing instrumental variable.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.