Cross Modality Microscopy Segmentation via Adversarial Adaptation.

Yue Guo, Qian Wang, Oleh Krupa, Jason Stein, Guorong Wu, Kira Bradford, Ashok Krishnamurthy
{"title":"Cross Modality Microscopy Segmentation via Adversarial Adaptation.","authors":"Yue Guo,&nbsp;Qian Wang,&nbsp;Oleh Krupa,&nbsp;Jason Stein,&nbsp;Guorong Wu,&nbsp;Kira Bradford,&nbsp;Ashok Krishnamurthy","doi":"10.1007/978-3-030-17935-9_42","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning techniques have been successfully applied to automatically segment and quantify cell-types in images acquired from both confocal and light sheet fluorescence microscopy. However, the training of deep learning networks requires a massive amount of manually-labeled training data, which is a very time-consuming operation. In this paper, we demonstrate an adversarial adaptation method to transfer deep network knowledge for microscopy segmentation from one imaging modality (e.g., confocal) to a new imaging modality (e.g., light sheet) for which no or very limited labeled training data is available. Promising segmentation results show that the proposed transfer learning approach is an effective way to rapidly develop segmentation solutions for new imaging methods.</p>","PeriodicalId":92881,"journal":{"name":"Bioinformatics and Biomedical Engineering : 7th International Work-Conference, IWBBIO 2019, Granada, Spain, May 8-10, 2019, Proceedings, Parts I and II. IWBBIO (Conference) (7th : 2019 : Granada, Spain)","volume":"11466 ","pages":"469-478"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062366/pdf/nihms-1559790.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biomedical Engineering : 7th International Work-Conference, IWBBIO 2019, Granada, Spain, May 8-10, 2019, Proceedings, Parts I and II. IWBBIO (Conference) (7th : 2019 : Granada, Spain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-17935-9_42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Deep learning techniques have been successfully applied to automatically segment and quantify cell-types in images acquired from both confocal and light sheet fluorescence microscopy. However, the training of deep learning networks requires a massive amount of manually-labeled training data, which is a very time-consuming operation. In this paper, we demonstrate an adversarial adaptation method to transfer deep network knowledge for microscopy segmentation from one imaging modality (e.g., confocal) to a new imaging modality (e.g., light sheet) for which no or very limited labeled training data is available. Promising segmentation results show that the proposed transfer learning approach is an effective way to rapidly develop segmentation solutions for new imaging methods.

Abstract Image

Abstract Image

Abstract Image

通过对抗性适应的交叉模态显微镜分割。
深度学习技术已经成功地应用于共聚焦和光片荧光显微镜获得的图像中的自动分割和定量细胞类型。然而,深度学习网络的训练需要大量手工标注的训练数据,这是一个非常耗时的操作。在本文中,我们展示了一种对抗性适应方法,将用于显微镜分割的深度网络知识从一种成像模式(例如共聚焦)转移到一种新的成像模式(例如光片),其中没有或非常有限的标记训练数据可用。有希望的分割结果表明,迁移学习方法是快速开发新成像方法分割解决方案的有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信