Ami R Zota, Ruth J Geller, Brianna N VanNoy, Cherie Q Marfori, Sana Tabbara, Lisa Y Hu, Andrea A Baccarelli, Gaby N Moawad
{"title":"Phthalate Exposures and MicroRNA Expression in Uterine Fibroids: The FORGE Study.","authors":"Ami R Zota, Ruth J Geller, Brianna N VanNoy, Cherie Q Marfori, Sana Tabbara, Lisa Y Hu, Andrea A Baccarelli, Gaby N Moawad","doi":"10.1177/2516865720904057","DOIUrl":null,"url":null,"abstract":"<p><p>Phthalates are associated with multiple, adverse reproductive outcomes including increased risk of uterine leiomyoma (fibroids). Phthalates can interact with epigenetic modifications including microRNAs (miRNAs), which help regulate processes crucial to fibroid pathogenesis. However, no prior study has examined the influence of phthalates on miRNA expression in fibroid tumors. We conducted a preliminary, cross-sectional study to examine the associations between phthalate exposures and miRNA expression levels in fibroid tumors and to explore potential effect modification by race/ethnicity. We quantified expression levels of 754 miRNAs in fibroid tumor samples and analyzed spot urine samples for phthalate metabolites collected from 45 pre-menopausal women undergoing surgery for fibroid treatment at an academic hospital. Associations between miRNA levels in fibroids and phthalate biomarkers were evaluated using linear regression adjusting for age, race/ethnicity, and body mass index (BMI). Statistical tests were adjusted for multiple comparisons. We also performed in silico Ingenuity Pathway Analysis to identify the biological pathways that are regulated by phthalate-associated miRNAs. Mono-hydroxybutyl phthalate and mono(2-ethyl-5-hydroxyhexyl) phthalate were positively associated with miR-10a-5p (β = 0.76, 95% CI = [0.40, 1.11]) and miR-577 (β = 1.06, 95% CI = [0.53, 1.59]), respectively. A total of 8 phthalate-miRNA associations varied by race/ethnicity (q<sub>interaction</sub> < 0.10). Pathway analysis revealed that mRNA gene targets of phthalate-associated miRNAs were significantly associated with multiple fibroid-related processes including angiogenesis, apoptosis, and proliferation of connective tissues. Collectively, these data suggest that exposures to some phthalates are associated with miRNA in fibroids, and that associations may vary by race/ethnicity. Validation of these findings may provide insight into mechanisms underlying associations between phthalates and fibroids and contribute to novel hypotheses regarding racial/ethnic disparities in fibroids.</p>","PeriodicalId":41996,"journal":{"name":"Epigenetics Insights","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2516865720904057","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2516865720904057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 24
Abstract
Phthalates are associated with multiple, adverse reproductive outcomes including increased risk of uterine leiomyoma (fibroids). Phthalates can interact with epigenetic modifications including microRNAs (miRNAs), which help regulate processes crucial to fibroid pathogenesis. However, no prior study has examined the influence of phthalates on miRNA expression in fibroid tumors. We conducted a preliminary, cross-sectional study to examine the associations between phthalate exposures and miRNA expression levels in fibroid tumors and to explore potential effect modification by race/ethnicity. We quantified expression levels of 754 miRNAs in fibroid tumor samples and analyzed spot urine samples for phthalate metabolites collected from 45 pre-menopausal women undergoing surgery for fibroid treatment at an academic hospital. Associations between miRNA levels in fibroids and phthalate biomarkers were evaluated using linear regression adjusting for age, race/ethnicity, and body mass index (BMI). Statistical tests were adjusted for multiple comparisons. We also performed in silico Ingenuity Pathway Analysis to identify the biological pathways that are regulated by phthalate-associated miRNAs. Mono-hydroxybutyl phthalate and mono(2-ethyl-5-hydroxyhexyl) phthalate were positively associated with miR-10a-5p (β = 0.76, 95% CI = [0.40, 1.11]) and miR-577 (β = 1.06, 95% CI = [0.53, 1.59]), respectively. A total of 8 phthalate-miRNA associations varied by race/ethnicity (qinteraction < 0.10). Pathway analysis revealed that mRNA gene targets of phthalate-associated miRNAs were significantly associated with multiple fibroid-related processes including angiogenesis, apoptosis, and proliferation of connective tissues. Collectively, these data suggest that exposures to some phthalates are associated with miRNA in fibroids, and that associations may vary by race/ethnicity. Validation of these findings may provide insight into mechanisms underlying associations between phthalates and fibroids and contribute to novel hypotheses regarding racial/ethnic disparities in fibroids.