Coinfection dynamics of heroin transmission and HIV infection in a single population.

IF 1.8 4区 数学 Q3 ECOLOGY
Xi-Chao Duan, Xue-Zhi Li, Maia Martcheva
{"title":"Coinfection dynamics of heroin transmission and HIV infection in a single population.","authors":"Xi-Chao Duan,&nbsp;Xue-Zhi Li,&nbsp;Maia Martcheva","doi":"10.1080/17513758.2020.1726516","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a model of a joint spread of heroin use and HIV infection. The unique disease-free equilibrium always exists and it is stable if the basic reproduction numbers of heroin use and HIV infection are both less than 1. The semi-trivial equilibrium of HIV infection (heroin use) exists if the basic reproduction number of HIV infection (heroin use) is larger than 1 and it is locally stable if and only if the invasion number of heroin use (HIV infection) is less than 1. When both semi-trivial equilibria lose their stability, a coexistence equilibrium occurs, which may not be unique. We compare the model to US data on heroin use and HIV transmission. We conclude that the two diseases in the US are in a coexistence regime. Elasticities of the invasion numbers suggest two foci for control measures: targeting the drug abuse epidemic and reducing HIV risk in drug-users.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"116-142"},"PeriodicalIF":1.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1726516","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2020.1726516","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

We propose a model of a joint spread of heroin use and HIV infection. The unique disease-free equilibrium always exists and it is stable if the basic reproduction numbers of heroin use and HIV infection are both less than 1. The semi-trivial equilibrium of HIV infection (heroin use) exists if the basic reproduction number of HIV infection (heroin use) is larger than 1 and it is locally stable if and only if the invasion number of heroin use (HIV infection) is less than 1. When both semi-trivial equilibria lose their stability, a coexistence equilibrium occurs, which may not be unique. We compare the model to US data on heroin use and HIV transmission. We conclude that the two diseases in the US are in a coexistence regime. Elasticities of the invasion numbers suggest two foci for control measures: targeting the drug abuse epidemic and reducing HIV risk in drug-users.

单一人群中海洛因传播和HIV感染的共同感染动态。
我们提出了一个海洛因使用和艾滋病毒感染联合传播的模型。唯一的无病平衡总是存在的,当海洛因使用和HIV感染的基本繁殖数都小于1时,该平衡是稳定的。当HIV感染(海洛因使用)的基本繁殖数大于1时,存在HIV感染(海洛因使用)的半平凡均衡;当且仅当海洛因使用(HIV感染)的入侵数小于1时,存在局部稳定均衡。当两个半平凡平衡都失去稳定性时,就会出现共存平衡,这种平衡可能不是唯一的。我们将该模型与美国海洛因使用和艾滋病毒传播的数据进行比较。我们得出结论,这两种疾病在美国处于共存状态。入侵数量的弹性表明了控制措施的两个重点:针对药物滥用流行病和减少吸毒者的艾滋病毒风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信