On Interpolating Sesqui-Harmonic Maps Between Riemannian Manifolds.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2020-01-01 Epub Date: 2019-01-14 DOI:10.1007/s12220-018-00130-x
Volker Branding
{"title":"On Interpolating Sesqui-Harmonic Maps Between Riemannian Manifolds.","authors":"Volker Branding","doi":"10.1007/s12220-018-00130-x","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated from the action functional for bosonic strings with extrinsic curvature term we introduce an action functional for maps between Riemannian manifolds that interpolates between the actions for harmonic and biharmonic maps. Critical points of this functional will be called interpolating sesqui-harmonic maps. In this article we initiate a rigorous mathematical treatment of this functional and study various basic aspects of its critical points.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"30 1","pages":"248-273"},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-018-00130-x","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-018-00130-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

Abstract

Motivated from the action functional for bosonic strings with extrinsic curvature term we introduce an action functional for maps between Riemannian manifolds that interpolates between the actions for harmonic and biharmonic maps. Critical points of this functional will be called interpolating sesqui-harmonic maps. In this article we initiate a rigorous mathematical treatment of this functional and study various basic aspects of its critical points.

黎曼流形间的倍谐插值映射。
从具有外在曲率项的玻色子弦的作用泛函出发,我们引入了一个黎曼流形之间映射的作用泛函,它在调和和双调和映射的作用之间进行插值。该泛函的临界点称为插值倍调和映射。本文对该泛函进行了严格的数学处理,并研究了其临界点的各个基本方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信