{"title":"Identification of three cell populations from the shell gland of a bivalve mollusc.","authors":"Gang Liu, Pin Huan, Baozhong Liu","doi":"10.1007/s00427-020-00646-9","DOIUrl":null,"url":null,"abstract":"<p><p>The molluscan larval shell formation is a complicated process. There is evidence that the mantle of the primary larva (trochophore) contains functionally different cell populations with distinct gene expression profiles. However, it remains unclear how these cells are specified. In the present study, we identified three cell populations from the shell gland in earlier stages (gastrula) from the bivalve mollusc Crassostrea gigas. These cell populations were determined by analyzing the co-expression relationships among six potential shell formation (pSF) genes using two-color hybridization. The three cell populations, which we designated as SGCPs (shell gland cell populations), formed a concentric-circle pattern from outside to inside of the shell gland. SGCP I was located in the outer edge of the shell gland and the cells expressed pax2/5/8, gata2/3, and bmp2/4. SGCP II was located more internally and the cells expressed two engrailed genes. The last population, SGCP III, was located in the central region of the shell gland and the cells expressed lox4. Determination of the gene expression profiles of SGCPs would help trace their origins and fates and elucidate how these cell populations are specified. Moreover, potential roles of the SGCPs, e.g., development of sensory cells and shell biogenesis, are suggested. Our results reveal the internal organization of the embryonic shell gland at the molecular level and add to the knowledge of larval shell formation.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"230 1","pages":"39-45"},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Genes and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00427-020-00646-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The molluscan larval shell formation is a complicated process. There is evidence that the mantle of the primary larva (trochophore) contains functionally different cell populations with distinct gene expression profiles. However, it remains unclear how these cells are specified. In the present study, we identified three cell populations from the shell gland in earlier stages (gastrula) from the bivalve mollusc Crassostrea gigas. These cell populations were determined by analyzing the co-expression relationships among six potential shell formation (pSF) genes using two-color hybridization. The three cell populations, which we designated as SGCPs (shell gland cell populations), formed a concentric-circle pattern from outside to inside of the shell gland. SGCP I was located in the outer edge of the shell gland and the cells expressed pax2/5/8, gata2/3, and bmp2/4. SGCP II was located more internally and the cells expressed two engrailed genes. The last population, SGCP III, was located in the central region of the shell gland and the cells expressed lox4. Determination of the gene expression profiles of SGCPs would help trace their origins and fates and elucidate how these cell populations are specified. Moreover, potential roles of the SGCPs, e.g., development of sensory cells and shell biogenesis, are suggested. Our results reveal the internal organization of the embryonic shell gland at the molecular level and add to the knowledge of larval shell formation.
期刊介绍:
Development Genes and Evolution publishes high-quality reports on all aspects of development biology and evolutionary biology. The journal reports on experimental and bioinformatics work at the systemic, cellular and molecular levels in the field of animal and plant systems, covering key aspects of the following topics:
Embryological and genetic analysis of model and non-model organisms
Genes and pattern formation in invertebrates, vertebrates and plants
Axial patterning, embryonic induction and fate maps
Cellular mechanisms of morphogenesis and organogenesis
Stem cells and regeneration
Functional genomics of developmental processes
Developmental diversity and evolution
Evolution of developmentally relevant genes
Phylogeny of animals and plants
Microevolution
Paleontology.