{"title":"Antimicrobial Effect of Orthodontic Materials on Cariogenic Bacteria Streptococcus mutans and Lactobacillus acidophilus.","authors":"Sokol Krasniqi, Milaim Sejdini, David Stubljar, Tomislav Jukic, Alojz Ihan, Kaltrina Aliu, Xhevdet Aliu","doi":"10.12659/MSMBR.920510","DOIUrl":null,"url":null,"abstract":"<p><p>BACKGROUND White spot lesions (WSLs) are a common complication after orthodontic treatment. The aim of this study was to characterize and compare the antimicrobial properties of selenium-containing vs. fluoride-containing orthodontic materials. MATERIAL AND METHODS Antibacterial efficacy of orthodontic materials (SeLECT Defense bonding agent, Adhesive agent, Band Cement, Transbond Plus SEP bonding agent, Transbond Plus Adhesive agent, Fuji I Band cement, Fuji Ortho LC Adhesive agent, Ortho Solo Bonding agent, Transbond XT bonding agent, and Transbond XT primer) was tested with the inhibition of 2 bacterial strains: S. mutans (ATCC 10449) and L. acidophilus (ATCC 4356). The antimicrobial efficacy of the materials was measured by agar diffusion test. The diameters of inhibition zones around each disk were measured in millimeters (mm). RESULTS Materials containing selenium and fluoride showed significant differences from the negative control (both p<0.001). Orthodontic materials containing fluoride as a potential antimicrobial agent showed larger zones of inhibition in total (9.1±2.6 mm), the selenium group was the second-most effective (4.7±4.9 mm), and the group without any potential antimicrobial agent showed the least antimicrobial effect (0.9±1.0 mm). Materials from the group with no antibacterial agent were not significantly different from the negative control group (p>0.05). CONCLUSIONS Materials containing selenium carried the most significance when comparing microorganisms with the agent, since they were the only ones showing difference between the 2 microorganisms. They showed statistically significant difference in efficacy against S. mutans, and poor antimicrobial effect against L. acidophilus. These data suggest that orthodontic materials containing selenium might have the potential to prevent WSLs due to their antimicrobial properties.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/b6/medscimonitbasicres-26-e920510.PMC6993557.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12659/MSMBR.920510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
BACKGROUND White spot lesions (WSLs) are a common complication after orthodontic treatment. The aim of this study was to characterize and compare the antimicrobial properties of selenium-containing vs. fluoride-containing orthodontic materials. MATERIAL AND METHODS Antibacterial efficacy of orthodontic materials (SeLECT Defense bonding agent, Adhesive agent, Band Cement, Transbond Plus SEP bonding agent, Transbond Plus Adhesive agent, Fuji I Band cement, Fuji Ortho LC Adhesive agent, Ortho Solo Bonding agent, Transbond XT bonding agent, and Transbond XT primer) was tested with the inhibition of 2 bacterial strains: S. mutans (ATCC 10449) and L. acidophilus (ATCC 4356). The antimicrobial efficacy of the materials was measured by agar diffusion test. The diameters of inhibition zones around each disk were measured in millimeters (mm). RESULTS Materials containing selenium and fluoride showed significant differences from the negative control (both p<0.001). Orthodontic materials containing fluoride as a potential antimicrobial agent showed larger zones of inhibition in total (9.1±2.6 mm), the selenium group was the second-most effective (4.7±4.9 mm), and the group without any potential antimicrobial agent showed the least antimicrobial effect (0.9±1.0 mm). Materials from the group with no antibacterial agent were not significantly different from the negative control group (p>0.05). CONCLUSIONS Materials containing selenium carried the most significance when comparing microorganisms with the agent, since they were the only ones showing difference between the 2 microorganisms. They showed statistically significant difference in efficacy against S. mutans, and poor antimicrobial effect against L. acidophilus. These data suggest that orthodontic materials containing selenium might have the potential to prevent WSLs due to their antimicrobial properties.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.