A new quantile estimator with weights based on a subsampling approach.

Gözde Navruz, A Fırat Özdemir
{"title":"A new quantile estimator with weights based on a subsampling approach.","authors":"Gözde Navruz,&nbsp;A Fırat Özdemir","doi":"10.1111/bmsp.12198","DOIUrl":null,"url":null,"abstract":"<p><p>Quantiles are widely used in both theoretical and applied statistics, and it is important to be able to deploy appropriate quantile estimators. To improve performance in the lower and upper quantiles, especially with small sample sizes, a new quantile estimator is introduced which is a weighted average of all order statistics. The new estimator, denoted NO, has desirable asymptotic properties. Moreover, it offers practical advantages over four estimators in terms of efficiency in most experimental settings. The Harrell-Davis quantile estimator, the default quantile estimator of the R programming language, the Sfakianakis-Verginis SV2 quantile estimator and a kernel quantile estimator. The NO quantile estimator is also utilized in comparing two independent groups with a percentile bootstrap method and, as expected, it is more successful than other estimators in controlling Type I error rates.</p>","PeriodicalId":272649,"journal":{"name":"The British journal of mathematical and statistical psychology","volume":"73 3","pages":"506-521"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/bmsp.12198","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British journal of mathematical and statistical psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Quantiles are widely used in both theoretical and applied statistics, and it is important to be able to deploy appropriate quantile estimators. To improve performance in the lower and upper quantiles, especially with small sample sizes, a new quantile estimator is introduced which is a weighted average of all order statistics. The new estimator, denoted NO, has desirable asymptotic properties. Moreover, it offers practical advantages over four estimators in terms of efficiency in most experimental settings. The Harrell-Davis quantile estimator, the default quantile estimator of the R programming language, the Sfakianakis-Verginis SV2 quantile estimator and a kernel quantile estimator. The NO quantile estimator is also utilized in comparing two independent groups with a percentile bootstrap method and, as expected, it is more successful than other estimators in controlling Type I error rates.

一种新的基于子抽样方法的权重分位数估计器。
分位数在理论和应用统计学中都有广泛的应用,能够部署合适的分位数估计器是很重要的。为了提高上下分位数的性能,特别是在小样本量的情况下,引入了一种新的分位数估计器,它是所有阶统计量的加权平均。新的估计量记为NO,具有理想的渐近性质。此外,在大多数实验环境中,它在效率方面比四种估计器具有实际优势。Harrell-Davis分位数估计器,R编程语言的默认分位数估计器,sakianakis - verginis SV2分位数估计器和核分位数估计器。NO分位数估计器也被用于比较两个独立的组与百分位数bootstrap方法,正如预期的那样,在控制I型错误率方面,它比其他估计器更成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信